Spaces:
Running
on
T4
Running
on
T4
Create prompt_parser.py
Browse files- modules/prompt_parser.py +391 -0
modules/prompt_parser.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Code from https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/8e2aeee4a127b295bfc880800e4a312e0f049b85, modified.
|
8 |
+
|
9 |
+
class PromptChunk:
|
10 |
+
"""
|
11 |
+
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
|
12 |
+
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
|
13 |
+
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
|
14 |
+
so just 75 tokens from prompt.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.tokens = []
|
19 |
+
self.multipliers = []
|
20 |
+
self.fixes = []
|
21 |
+
|
22 |
+
|
23 |
+
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
24 |
+
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
|
25 |
+
have unlimited prompt length and assign weights to tokens in prompt.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, text_encoder, enable_emphasis=True):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.device = lambda: text_encoder.device
|
32 |
+
self.enable_emphasis = enable_emphasis
|
33 |
+
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
|
34 |
+
depending on model."""
|
35 |
+
|
36 |
+
self.chunk_length = 75
|
37 |
+
|
38 |
+
def empty_chunk(self):
|
39 |
+
"""creates an empty PromptChunk and returns it"""
|
40 |
+
|
41 |
+
chunk = PromptChunk()
|
42 |
+
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
|
43 |
+
chunk.multipliers = [1.0] * (self.chunk_length + 2)
|
44 |
+
return chunk
|
45 |
+
|
46 |
+
def get_target_prompt_token_count(self, token_count):
|
47 |
+
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
|
48 |
+
|
49 |
+
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
|
50 |
+
|
51 |
+
def tokenize_line(self, line):
|
52 |
+
"""
|
53 |
+
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
|
54 |
+
represent the prompt.
|
55 |
+
Returns the list and the total number of tokens in the prompt.
|
56 |
+
"""
|
57 |
+
|
58 |
+
if self.enable_emphasis:
|
59 |
+
parsed = parse_prompt_attention(line)
|
60 |
+
else:
|
61 |
+
parsed = [[line, 1.0]]
|
62 |
+
|
63 |
+
tokenized = self.tokenize([text for text, _ in parsed])
|
64 |
+
|
65 |
+
chunks = []
|
66 |
+
chunk = PromptChunk()
|
67 |
+
token_count = 0
|
68 |
+
last_comma = -1
|
69 |
+
|
70 |
+
def next_chunk(is_last=False):
|
71 |
+
"""puts current chunk into the list of results and produces the next one - empty;
|
72 |
+
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
|
73 |
+
nonlocal token_count
|
74 |
+
nonlocal last_comma
|
75 |
+
nonlocal chunk
|
76 |
+
|
77 |
+
if is_last:
|
78 |
+
token_count += len(chunk.tokens)
|
79 |
+
else:
|
80 |
+
token_count += self.chunk_length
|
81 |
+
|
82 |
+
to_add = self.chunk_length - len(chunk.tokens)
|
83 |
+
if to_add > 0:
|
84 |
+
chunk.tokens += [self.id_end] * to_add
|
85 |
+
chunk.multipliers += [1.0] * to_add
|
86 |
+
|
87 |
+
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
|
88 |
+
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
|
89 |
+
|
90 |
+
last_comma = -1
|
91 |
+
chunks.append(chunk)
|
92 |
+
chunk = PromptChunk()
|
93 |
+
|
94 |
+
comma_padding_backtrack = 20 # default value in https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/shared.py#L410
|
95 |
+
for tokens, (text, weight) in zip(tokenized, parsed):
|
96 |
+
if text == "BREAK" and weight == -1:
|
97 |
+
next_chunk()
|
98 |
+
continue
|
99 |
+
|
100 |
+
position = 0
|
101 |
+
while position < len(tokens):
|
102 |
+
token = tokens[position]
|
103 |
+
|
104 |
+
if token == self.comma_token:
|
105 |
+
last_comma = len(chunk.tokens)
|
106 |
+
|
107 |
+
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
108 |
+
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
109 |
+
elif (
|
110 |
+
comma_padding_backtrack != 0
|
111 |
+
and len(chunk.tokens) == self.chunk_length
|
112 |
+
and last_comma != -1
|
113 |
+
and len(chunk.tokens) - last_comma <= comma_padding_backtrack
|
114 |
+
):
|
115 |
+
break_location = last_comma + 1
|
116 |
+
|
117 |
+
reloc_tokens = chunk.tokens[break_location:]
|
118 |
+
reloc_mults = chunk.multipliers[break_location:]
|
119 |
+
|
120 |
+
chunk.tokens = chunk.tokens[:break_location]
|
121 |
+
chunk.multipliers = chunk.multipliers[:break_location]
|
122 |
+
|
123 |
+
next_chunk()
|
124 |
+
chunk.tokens = reloc_tokens
|
125 |
+
chunk.multipliers = reloc_mults
|
126 |
+
|
127 |
+
if len(chunk.tokens) == self.chunk_length:
|
128 |
+
next_chunk()
|
129 |
+
|
130 |
+
chunk.tokens.append(token)
|
131 |
+
chunk.multipliers.append(weight)
|
132 |
+
position += 1
|
133 |
+
|
134 |
+
if len(chunk.tokens) > 0 or len(chunks) == 0:
|
135 |
+
next_chunk(is_last=True)
|
136 |
+
|
137 |
+
return chunks, token_count
|
138 |
+
|
139 |
+
def process_texts(self, texts):
|
140 |
+
"""
|
141 |
+
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
|
142 |
+
length, in tokens, of all texts.
|
143 |
+
"""
|
144 |
+
|
145 |
+
token_count = 0
|
146 |
+
|
147 |
+
cache = {}
|
148 |
+
batch_chunks = []
|
149 |
+
for line in texts:
|
150 |
+
if line in cache:
|
151 |
+
chunks = cache[line]
|
152 |
+
else:
|
153 |
+
chunks, current_token_count = self.tokenize_line(line)
|
154 |
+
token_count = max(current_token_count, token_count)
|
155 |
+
|
156 |
+
cache[line] = chunks
|
157 |
+
|
158 |
+
batch_chunks.append(chunks)
|
159 |
+
|
160 |
+
return batch_chunks, token_count
|
161 |
+
|
162 |
+
def forward(self, texts):
|
163 |
+
"""
|
164 |
+
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
|
165 |
+
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
|
166 |
+
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
|
167 |
+
An example shape returned by this function can be: (2, 77, 768).
|
168 |
+
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
169 |
+
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
170 |
+
"""
|
171 |
+
|
172 |
+
batch_chunks, token_count = self.process_texts(texts)
|
173 |
+
chunk_count = max([len(x) for x in batch_chunks])
|
174 |
+
|
175 |
+
zs = []
|
176 |
+
ts = []
|
177 |
+
for i in range(chunk_count):
|
178 |
+
batch_chunk = [
|
179 |
+
chunks[i] if i < len(chunks) else self.empty_chunk()
|
180 |
+
for chunks in batch_chunks
|
181 |
+
]
|
182 |
+
|
183 |
+
tokens = [x.tokens for x in batch_chunk]
|
184 |
+
multipliers = [x.multipliers for x in batch_chunk]
|
185 |
+
# self.embeddings.fixes = [x.fixes for x in batch_chunk]
|
186 |
+
|
187 |
+
# for fixes in self.embeddings.fixes:
|
188 |
+
# for position, embedding in fixes:
|
189 |
+
# used_embeddings[embedding.name] = embedding
|
190 |
+
|
191 |
+
z = self.process_tokens(tokens, multipliers)
|
192 |
+
zs.append(z)
|
193 |
+
ts.append(tokens)
|
194 |
+
|
195 |
+
return np.hstack(ts), torch.hstack(zs)
|
196 |
+
|
197 |
+
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
198 |
+
"""
|
199 |
+
sends one single prompt chunk to be encoded by transformers neural network.
|
200 |
+
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
|
201 |
+
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
|
202 |
+
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
|
203 |
+
corresponds to one token.
|
204 |
+
"""
|
205 |
+
tokens = torch.asarray(remade_batch_tokens).to(self.device())
|
206 |
+
|
207 |
+
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
|
208 |
+
if self.id_end != self.id_pad:
|
209 |
+
for batch_pos in range(len(remade_batch_tokens)):
|
210 |
+
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
211 |
+
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad
|
212 |
+
|
213 |
+
z = self.encode_with_transformers(tokens)
|
214 |
+
|
215 |
+
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
216 |
+
batch_multipliers = torch.asarray(batch_multipliers).to(self.device())
|
217 |
+
original_mean = z.mean()
|
218 |
+
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
219 |
+
new_mean = z.mean()
|
220 |
+
z = z * (original_mean / new_mean)
|
221 |
+
|
222 |
+
return z
|
223 |
+
|
224 |
+
|
225 |
+
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
226 |
+
def __init__(self, tokenizer, text_encoder):
|
227 |
+
super().__init__(text_encoder)
|
228 |
+
self.tokenizer = tokenizer
|
229 |
+
self.text_encoder = text_encoder
|
230 |
+
|
231 |
+
vocab = self.tokenizer.get_vocab()
|
232 |
+
|
233 |
+
self.comma_token = vocab.get(",</w>", None)
|
234 |
+
|
235 |
+
self.token_mults = {}
|
236 |
+
tokens_with_parens = [
|
237 |
+
(k, v)
|
238 |
+
for k, v in vocab.items()
|
239 |
+
if "(" in k or ")" in k or "[" in k or "]" in k
|
240 |
+
]
|
241 |
+
for text, ident in tokens_with_parens:
|
242 |
+
mult = 1.0
|
243 |
+
for c in text:
|
244 |
+
if c == "[":
|
245 |
+
mult /= 1.1
|
246 |
+
if c == "]":
|
247 |
+
mult *= 1.1
|
248 |
+
if c == "(":
|
249 |
+
mult *= 1.1
|
250 |
+
if c == ")":
|
251 |
+
mult /= 1.1
|
252 |
+
|
253 |
+
if mult != 1.0:
|
254 |
+
self.token_mults[ident] = mult
|
255 |
+
|
256 |
+
self.id_start = self.tokenizer.bos_token_id
|
257 |
+
self.id_end = self.tokenizer.eos_token_id
|
258 |
+
self.id_pad = self.id_end
|
259 |
+
|
260 |
+
def tokenize(self, texts):
|
261 |
+
tokenized = self.tokenizer(
|
262 |
+
texts, truncation=False, add_special_tokens=False
|
263 |
+
)["input_ids"]
|
264 |
+
|
265 |
+
return tokenized
|
266 |
+
|
267 |
+
def encode_with_transformers(self, tokens):
|
268 |
+
CLIP_stop_at_last_layers = 1
|
269 |
+
tokens = tokens.to(self.text_encoder.device)
|
270 |
+
outputs = self.text_encoder(tokens, output_hidden_states=True)
|
271 |
+
|
272 |
+
if CLIP_stop_at_last_layers > 1:
|
273 |
+
z = outputs.hidden_states[-CLIP_stop_at_last_layers]
|
274 |
+
z = self.text_encoder.text_model.final_layer_norm(z)
|
275 |
+
else:
|
276 |
+
z = outputs.last_hidden_state
|
277 |
+
|
278 |
+
return z
|
279 |
+
|
280 |
+
|
281 |
+
re_attention = re.compile(
|
282 |
+
r"""
|
283 |
+
\\\(|
|
284 |
+
\\\)|
|
285 |
+
\\\[|
|
286 |
+
\\]|
|
287 |
+
\\\\|
|
288 |
+
\\|
|
289 |
+
\(|
|
290 |
+
\[|
|
291 |
+
:([+-]?[.\d]+)\)|
|
292 |
+
\)|
|
293 |
+
]|
|
294 |
+
[^\\()\[\]:]+|
|
295 |
+
:
|
296 |
+
""",
|
297 |
+
re.X,
|
298 |
+
)
|
299 |
+
|
300 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
301 |
+
|
302 |
+
|
303 |
+
def parse_prompt_attention(text):
|
304 |
+
"""
|
305 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
306 |
+
Accepted tokens are:
|
307 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
308 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
309 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
310 |
+
\( - literal character '('
|
311 |
+
\[ - literal character '['
|
312 |
+
\) - literal character ')'
|
313 |
+
\] - literal character ']'
|
314 |
+
\\ - literal character '\'
|
315 |
+
anything else - just text
|
316 |
+
|
317 |
+
>>> parse_prompt_attention('normal text')
|
318 |
+
[['normal text', 1.0]]
|
319 |
+
>>> parse_prompt_attention('an (important) word')
|
320 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
321 |
+
>>> parse_prompt_attention('(unbalanced')
|
322 |
+
[['unbalanced', 1.1]]
|
323 |
+
>>> parse_prompt_attention('\(literal\]')
|
324 |
+
[['(literal]', 1.0]]
|
325 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
326 |
+
[['unnecessaryparens', 1.1]]
|
327 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
328 |
+
[['a ', 1.0],
|
329 |
+
['house', 1.5730000000000004],
|
330 |
+
[' ', 1.1],
|
331 |
+
['on', 1.0],
|
332 |
+
[' a ', 1.1],
|
333 |
+
['hill', 0.55],
|
334 |
+
[', sun, ', 1.1],
|
335 |
+
['sky', 1.4641000000000006],
|
336 |
+
['.', 1.1]]
|
337 |
+
"""
|
338 |
+
|
339 |
+
res = []
|
340 |
+
round_brackets = []
|
341 |
+
square_brackets = []
|
342 |
+
|
343 |
+
round_bracket_multiplier = 1.1
|
344 |
+
square_bracket_multiplier = 1 / 1.1
|
345 |
+
|
346 |
+
def multiply_range(start_position, multiplier):
|
347 |
+
for p in range(start_position, len(res)):
|
348 |
+
res[p][1] *= multiplier
|
349 |
+
|
350 |
+
for m in re_attention.finditer(text):
|
351 |
+
text = m.group(0)
|
352 |
+
weight = m.group(1)
|
353 |
+
|
354 |
+
if text.startswith("\\"):
|
355 |
+
res.append([text[1:], 1.0])
|
356 |
+
elif text == "(":
|
357 |
+
round_brackets.append(len(res))
|
358 |
+
elif text == "[":
|
359 |
+
square_brackets.append(len(res))
|
360 |
+
elif weight is not None and len(round_brackets) > 0:
|
361 |
+
multiply_range(round_brackets.pop(), float(weight))
|
362 |
+
elif text == ")" and len(round_brackets) > 0:
|
363 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
364 |
+
elif text == "]" and len(square_brackets) > 0:
|
365 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
366 |
+
else:
|
367 |
+
parts = re.split(re_break, text)
|
368 |
+
for i, part in enumerate(parts):
|
369 |
+
if i > 0:
|
370 |
+
res.append(["BREAK", -1])
|
371 |
+
res.append([part, 1.0])
|
372 |
+
|
373 |
+
for pos in round_brackets:
|
374 |
+
multiply_range(pos, round_bracket_multiplier)
|
375 |
+
|
376 |
+
for pos in square_brackets:
|
377 |
+
multiply_range(pos, square_bracket_multiplier)
|
378 |
+
|
379 |
+
if len(res) == 0:
|
380 |
+
res = [["", 1.0]]
|
381 |
+
|
382 |
+
# merge runs of identical weights
|
383 |
+
i = 0
|
384 |
+
while i + 1 < len(res):
|
385 |
+
if res[i][1] == res[i + 1][1]:
|
386 |
+
res[i][0] += res[i + 1][0]
|
387 |
+
res.pop(i + 1)
|
388 |
+
else:
|
389 |
+
i += 1
|
390 |
+
|
391 |
+
return res
|