File size: 16,643 Bytes
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2563c
5998d0e
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df1bb1
a584e78
7df1bb1
a584e78
 
7df1bb1
5a50ff9
1606e2d
 
 
7df1bb1
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df1bb1
1606e2d
 
7df1bb1
1606e2d
5a50ff9
1606e2d
 
 
 
 
 
 
 
 
5998d0e
1606e2d
 
 
 
 
 
eff043b
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbca4ce
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1646f5
 
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
 
69fb4e6
 
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
 
 
 
 
 
5998d0e
69fb4e6
7df1bb1
 
69fb4e6
7df1bb1
1dc597e
69fb4e6
7df1bb1
 
 
69fb4e6
7df1bb1
69fb4e6
7df1bb1
 
 
 
 
 
bbca4ce
7df1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661a282
7df1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb4e6
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import spaces
import os
import json
import time
import copy
import torch
from diffusers import AutoPipelineForText2Image, StableDiffusionPipeline,DiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL, AutoencoderTiny, UNet2DConditionModel
from huggingface_hub import hf_hub_download, snapshot_download
from pathlib import Path
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import os
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import utils
import base64
import json
import jwt
import glob
import traceback

#from onediffx import compile_pipe, save_pipe, load_pipe

HF_TOKEN = os.getenv('HF_TOKEN')
VAR_PUBLIC_KEY = os.getenv('PUBLIC_KEY')
DATASET_ID = 'nsfwalex/checkpoint_n_lora'

class AuthHelper:
    def load_public_key_from_file(self):
        public_key_bytes = VAR_PUBLIC_KEY.encode('utf-8')  # Convert to bytes if it's a string
        public_key = serialization.load_pem_public_key(
            public_key_bytes,
            backend=default_backend()
        )
        return public_key

    def __init__(self):
        self.public_key = self.load_public_key_from_file()

    # check authkey
    # 1. decode with public key
    # 2. check timestamp
    # 3. check current host, referer, ip it should be the same as values in jwt

    def decode_jwt(self, token, algorithms=["RS256"]):
        """
        Decode and verify a JWT using a public key.
        
        :param public_key: The public key used for verification.
        :param token: The JWT string to decode.
        :param algorithms: List of acceptable algorithms (default is ["RS256"]).
        :return: The decoded JWT payload if verification is successful.
        :raises: Exception if verification fails.
        """
        try:
            # Decode the JWT
            decoded_payload = jwt.decode(
                token,
                self.public_key,
                algorithms=algorithms,
                options={"verify_signature": True}  # Explicitly enable signature verification
            )
            return decoded_payload
        except Exception as e:
            print("Invalid token:", e)
            raise

    def check_auth(self, session, token):
        params = session.get("params") or {}
        if params.get("_skip_token_passkey", "") == "nsfwaisio_125687":
            return True
        sip = session.get("client_ip", "")
        shost = session.get("host", "")
        sreferer = session.get("refer")
        print(sip, shost, sreferer)
        jwt_data = self.decode_jwt(token)
        tip = jwt_data.get("ip", "")
        thost = jwt_data.get("host", "")
        treferer = jwt_data.get("referer", "")
        print(sip, tip, shost, thost, sreferer, treferer)
        if not tip or not thost or not treferer:
            raise Exception("invalid token")
        if sip == tip and shost == thost and sreferer == treferer:
            return True
        raise Exception("wrong token")

class InferenceManager:
    def __init__(self, config_path="config.json"):
        cfg = {}
        with open(config_path, "r", encoding="utf-8") as f:
            cfg = json.load(f)
        self.cfg = cfg
        lora_options_path = cfg.get("loras", "")
        self.model_version = cfg["model_version"]
        self.lora_load_options = self.load_json(lora_options_path)  # Load LoRA load options
        self.lora_models = self.load_index_file("index.json")  # Load index.json
        self.preloaded_loras = []  # Array to store preloaded LoRAs with name and weights
        self.base_model_pipeline = self.load_base_model()  # Load the base model
        self.preload_loras()  # Preload LoRAs based on options

    def load_json(self, filepath):
        """Load JSON file into a dictionary."""
        if os.path.exists(filepath):
            with open(filepath, "r", encoding="utf-8") as f:
                return json.load(f)
        return {}

    def load_index_file(self, index_file):
        """Download index.json from Hugging Face and return the file path."""
        index_path = download_from_hf(index_file)
        if index_path:
            with open(index_path, "r", encoding="utf-8") as f:
                return json.load(f)
        return {}

    @spaces.GPU(duration=40)
    def compile_onediff(self):
        self.base_model_pipeline.to("cuda")
        pipe = self.base_model_pipeline
        # load the compiled pipe
        load_pipe(pipe, dir="cached_pipe")
        print("Start oneflow compiling...")
        start_compile = time.time()
        pipe = compile_pipe(pipe)
        # run once to trigger compilation
        image = pipe(
            prompt="street style, detailed, raw photo, woman, face, shot on CineStill 800T",
            height=512,
            width=512,
            num_inference_steps=10,
            output_type="pil",
        ).images
        image[0].save(f"test_image.png")
        compile_time = time.time() - start_compile
        #self.base_model_pipeline.to("cpu")
        # save the compiled pipe
        save_pipe(pipe, dir="cached_pipe")
        self.base_model_pipeline = pipe
        print(f"OneDiff compile in {compile_time}s")
    
    def load_base_model(self):
        """Load base model and return the pipeline."""
        start = time.time()
        cfg = self.cfg

        model_version = self.model_version
        ckpt_dir = snapshot_download(repo_id=cfg["model_id"], local_files_only=False)

        if model_version == "1.5":
            vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
            pipe = StableDiffusionPipeline.from_pretrained(ckpt_dir, vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True)
        else:
            
            #vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
            vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
            print(ckpt_dir)
            pipe = DiffusionPipeline.from_pretrained(
                ckpt_dir,
                vae=vae,
                #unet=unet,
                torch_dtype=torch.bfloat16,
                use_safetensors=True,
                #variant="fp16",
                custom_pipeline   = "lpw_stable_diffusion_xl",
            )
            
            clip_skip = cfg.get("clip_skip", 1)
            # Adjust clip skip for XL (assumed not relevant for SD 1.5)
            pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
        
        load_time = round(time.time() - start, 2)
        print(f"Base model loaded in {load_time}s")
        return pipe

    def preload_loras(self):
        """Preload all LoRAs marked as 'preload=True' and store for later use."""
        for lora_name, lora_info in self.lora_load_options.items():
            try:
                start = time.time()

                # Find the corresponding LoRA in index.json
                lora_index_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
                if not lora_index_info:
                    raise ValueError(f"LoRA {lora_name} not found in index.json.")

                # Check if the LoRA base model matches the current model version
                if self.model_version not in lora_info['base_model'] or not lora_info.get('preload', False):
                    print(f"Skipping {lora_name} as it's not compatible with the current model version.")
                    continue

                # Load LoRA weights from the specified path
                weight_path = download_from_hf(lora_index_info['path'], local_dir=None)
                if not weight_path:
                    raise ValueError(f"Failed to download LoRA weights for {lora_name}")
                load_time = round(time.time() - start, 2)
                print(f"Downloaded {lora_name} in {load_time}s")
                self.base_model_pipeline.load_lora_weights(
                    weight_path,
                    weight_name=lora_index_info["path"],
                    adapter_name=lora_name
                )

                # Store the preloaded LoRA name and weight for merging later
                if lora_info.get("preload", False):
                    self.preloaded_loras.append({
                        "name": lora_name,
                        "weight": lora_info.get("weight", 1.0)
                    })
                    load_time = round(time.time() - start, 2)
                    print(f"Preloaded LoRA {lora_name} with weight {lora_info.get('weight', 1.0)} in {load_time}s.")
            except Exception as e:
                print(f"Lora {lora_name} not loaded, skipping... {e}")

    def build_pipeline_with_lora(self, lora_list, sampler=None, new_pipeline=False):
        """Build the pipeline with specific LoRAs, loading any that are not preloaded."""
        # Deep copy the base pipeline
        start = time.time()
        if new_pipeline:
            temp_pipeline = copy.deepcopy(self.base_model_pipeline)
        else:
            temp_pipeline = self.base_model_pipeline
        copy_time = round(time.time() - start, 2)
        print(f"pipeline copied in {copy_time}s")
        # Track LoRAs to be loaded dynamically
        dynamic_loras = []

        # Check if any LoRAs in lora_list need to be loaded dynamically
        for lora_name in lora_list:
            if not any(l['name'] == lora_name for l in self.preloaded_loras):
                lora_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
                if lora_info and self.model_version in lora_info["attr"].get("base_model", []):
                    dynamic_loras.append({
                        "name": lora_name,
                        "filename": lora_info["path"],
                        "scale": 1.0  # Assuming default weight as 1.0 for dynamic LoRAs
                    })

        # Fuse preloaded and dynamic LoRAs
        all_loras = [{"name": x["name"], "scale": x["weight"], "preloaded": True} for x in self.preloaded_loras] + dynamic_loras
        set_lora_weights(temp_pipeline, all_loras,False)

        build_time = round(time.time() - start, 2)
        print(f"Pipeline built with LoRAs in {build_time}s.")
        if not sampler:
            sampler = self.cfg.get("sampler", "DPM2 a")
        # Define samplers
        samplers = {
            "Euler a": EulerAncestralDiscreteScheduler.from_config(temp_pipeline.scheduler.config),
            "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(temp_pipeline.scheduler.config, use_karras_sigmas=True),
            "DPM2 a": DPMSolverMultistepScheduler.from_config(temp_pipeline.scheduler.config)
        }
        
        # Set the scheduler based on the selected sampler
        temp_pipeline.scheduler = samplers[sampler]

        # Move the final pipeline to the GPU
        temp_pipeline
        return temp_pipeline

    def release(self, temp_pipeline):
        """Release the deepcopied pipeline to recycle memory."""
        del temp_pipeline
        torch.cuda.empty_cache()
        print("Memory released and cache cleared.")


class ModelManager:
    def __init__(self, model_directory):
        """
        Initialize the ModelManager by scanning all `.model.json` files in the given directory.

        :param model_directory: The directory to scan for model config files (e.g., "/path/to/models").
        """
        self.models = {}
        self.model_directory = model_directory
        self.load_models()

    def load_models(self):
        """
        Scan the model directory for `.model.json` files and initialize InferenceManager instances for each one.

        :param model_directory: Directory to scan for `.model.json` files.
        """
        model_files = glob.glob(os.path.join(self.model_directory, "*.model.json"))
        if not model_files:
            print(f"No model configuration files found in {self.model_directory}")
            return

        for file_path in model_files:
            model_name = self.get_model_name_from_url(file_path).split(".")[0]
            print(f"Initializing model: {model_name} from {file_path}")
            try:
                # Initialize InferenceManager for each model
                self.models[model_name] = InferenceManager(config_path=file_path)
            except Exception as e:
                print(traceback.format_exc())
                print(f"Failed to initialize model {model_name} from {file_path}: {e}")

    def get_model_name_from_url(self, url):
        """
        Extract the model name from the config file path (filename without extension).

        :param url: The file path of the configuration file.
        :return: The model name (file name without extension).
        """
        filename = os.path.basename(url)
        model_name, _ = os.path.splitext(filename)
        return model_name

    def get_model_pipeline(self, model_id, lora_list, sampler=None, new_pipeline=False):
        """
        Build the pipeline with specific LoRAs for a model.

        :param model_id: The model ID (the model name extracted from the config URL).
        :param lora_list: List of LoRAs to be applied to the model pipeline.
        :param sampler: The sampler to be used for the pipeline.
        :param new_pipeline: Flag to indicate whether to create a new pipeline or reuse the existing one.
        :return: The built pipeline with LoRAs applied.
        """
        model = self.models.get(model_id)
        if not model:
            print(f"Model {model_id} not found.")
            return None
        try:
            print(f"Building pipeline with LoRAs for model {model_id}...")
            return model.build_pipeline_with_lora(lora_list, sampler, new_pipeline)
        except Exception as e:
            print(traceback.format_exc())
            print(f"Failed to build pipeline for model {model_id}: {e}")
            return None

    def release_model(self, model_id):
        """
        Release resources and clear memory for a specific model.

        :param model_id: The model ID (the model name extracted from the config URL).
        """
        model = self.models.get(model_id)
        if not model:
            print(f"Model {model_id} not found.")
            return
        try:
            print(f"Releasing model {model_id}...")
            model.release(model.base_model_pipeline)
        except Exception as e:
            print(f"Failed to release model {model_id}: {e}")
            
# Hugging Face file download function - returns only file path
def download_from_hf(filename, local_dir=None):
    try:
        file_path = hf_hub_download(
            filename=filename,
            repo_id=DATASET_ID,
            repo_type="dataset",
            revision="main",
            local_dir=local_dir,
            local_files_only=False,  # Attempt to load from cache if available
        )
        return file_path  # Return file path only
    except Exception as e:
        print(f"Failed to load {filename} from Hugging Face: {str(e)}")
        return None


# Function to load and fuse LoRAs
def set_lora_weights(pipe, lorajson: list[dict], fuse=False):
    try:
        if not lorajson or not isinstance(lorajson, list):
            return

        a_list = []
        w_list = []
        for d in lorajson:
            if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None":
                continue

            k = d["name"]
            if not d.get("preloaded", False):
                start = time.time()
                weight_path = download_from_hf(d['filename'], local_dir=None)
                if weight_path:
                    pipe.load_lora_weights(weight_path, weight_name=d['filename'], adapter_name=k)

                load_time = round(time.time() - start, 2)
                print(f"LoRA {k} loaded in {load_time}s.")

            a_list.append(k)
            w_list.append(d["scale"])

        if not a_list:
            return

        start = time.time()
        pipe.set_adapters(a_list, adapter_weights=w_list)
        if fuse:
            pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
        fuse_time = round(time.time() - start, 2)
        print(f"LoRAs fused in {fuse_time}s.")
    except Exception as e:
        print(f"External LoRA Error: {e}")
        raise Exception(f"External LoRA Error: {e}") from e