Create inference_manager.py
Browse files- inference_manager.py +314 -0
inference_manager.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import copy
|
6 |
+
import torch
|
7 |
+
from diffusers import AutoPipelineForText2Image, StableDiffusionPipeline,DiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL, AutoencoderTiny, UNet2DConditionModel
|
8 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
9 |
+
from pathlib import Path
|
10 |
+
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
|
11 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
+
import os
|
13 |
+
from cryptography.hazmat.primitives.asymmetric import rsa, padding
|
14 |
+
from cryptography.hazmat.primitives import serialization, hashes
|
15 |
+
from cryptography.hazmat.backends import default_backend
|
16 |
+
from cryptography.hazmat.primitives.asymmetric import utils
|
17 |
+
import base64
|
18 |
+
import json
|
19 |
+
import jwt
|
20 |
+
|
21 |
+
#from onediffx import compile_pipe, save_pipe, load_pipe
|
22 |
+
|
23 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
24 |
+
VAR_PUBLIC_KEY = os.getenv('PUBLIC_KEY')
|
25 |
+
DATASET_ID = 'nsfwalex/checkpoint_n_lora'
|
26 |
+
|
27 |
+
class AuthHelper:
|
28 |
+
def load_public_key_from_file(self):
|
29 |
+
public_key_bytes = VAR_PUBLIC_KEY.encode('utf-8') # Convert to bytes if it's a string
|
30 |
+
public_key = serialization.load_pem_public_key(
|
31 |
+
public_key_bytes,
|
32 |
+
backend=default_backend()
|
33 |
+
)
|
34 |
+
return public_key
|
35 |
+
|
36 |
+
def __init__(self):
|
37 |
+
self.public_key = self.load_public_key_from_file()
|
38 |
+
|
39 |
+
# check authkey
|
40 |
+
# 1. decode with public key
|
41 |
+
# 2. check timestamp
|
42 |
+
# 3. check current host, referer, ip it should be the same as values in jwt
|
43 |
+
|
44 |
+
def decode_jwt(self, token, algorithms=["RS256"]):
|
45 |
+
"""
|
46 |
+
Decode and verify a JWT using a public key.
|
47 |
+
|
48 |
+
:param public_key: The public key used for verification.
|
49 |
+
:param token: The JWT string to decode.
|
50 |
+
:param algorithms: List of acceptable algorithms (default is ["RS256"]).
|
51 |
+
:return: The decoded JWT payload if verification is successful.
|
52 |
+
:raises: Exception if verification fails.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
# Decode the JWT
|
56 |
+
decoded_payload = jwt.decode(
|
57 |
+
token,
|
58 |
+
self.public_key,
|
59 |
+
algorithms=algorithms,
|
60 |
+
options={"verify_signature": True} # Explicitly enable signature verification
|
61 |
+
)
|
62 |
+
return decoded_payload
|
63 |
+
except Exception as e:
|
64 |
+
print("Invalid token:", e)
|
65 |
+
raise
|
66 |
+
|
67 |
+
def check_auth(self, session, token):
|
68 |
+
params = session.get("params") or {}
|
69 |
+
if params.get("_skip_token_passkey", "") == "nsfwaisio_125687":
|
70 |
+
return True
|
71 |
+
sip = session.get("client_ip", "")
|
72 |
+
shost = session.get("host", "")
|
73 |
+
sreferer = session.get("refer")
|
74 |
+
print(sip, shost, sreferer)
|
75 |
+
jwt_data = self.decode_jwt(token)
|
76 |
+
tip = jwt_data.get("ip", "")
|
77 |
+
thost = jwt_data.get("host", "")
|
78 |
+
treferer = jwt_data.get("referer", "")
|
79 |
+
print(sip, tip, shost, thost, sreferer, treferer)
|
80 |
+
if not tip or not thost or not treferer:
|
81 |
+
raise Exception("invalid token")
|
82 |
+
if sip == tip and shost == thost and sreferer == treferer:
|
83 |
+
return True
|
84 |
+
raise Exception("wrong token")
|
85 |
+
|
86 |
+
class InferenceManager:
|
87 |
+
def __init__(self, model_version="xl", config_path="config.json", lora_options_path="loras.json"):
|
88 |
+
self.model_version = model_version
|
89 |
+
self.lora_load_options = self.load_json(lora_options_path) # Load LoRA load options
|
90 |
+
self.lora_models = self.load_index_file("index.json") # Load index.json
|
91 |
+
self.preloaded_loras = [] # Array to store preloaded LoRAs with name and weights
|
92 |
+
self.base_model_pipeline = self.load_base_model(config_path) # Load the base model
|
93 |
+
self.preload_loras() # Preload LoRAs based on options
|
94 |
+
|
95 |
+
def load_json(self, filepath):
|
96 |
+
"""Load JSON file into a dictionary."""
|
97 |
+
if os.path.exists(filepath):
|
98 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
99 |
+
return json.load(f)
|
100 |
+
return {}
|
101 |
+
|
102 |
+
def load_index_file(self, index_file):
|
103 |
+
"""Download index.json from Hugging Face and return the file path."""
|
104 |
+
index_path = download_from_hf(index_file)
|
105 |
+
if index_path:
|
106 |
+
with open(index_path, "r", encoding="utf-8") as f:
|
107 |
+
return json.load(f)
|
108 |
+
return {}
|
109 |
+
|
110 |
+
@spaces.GPU(duration=40)
|
111 |
+
def compile_onediff(self):
|
112 |
+
self.base_model_pipeline.to("cuda")
|
113 |
+
pipe = self.base_model_pipeline
|
114 |
+
# load the compiled pipe
|
115 |
+
load_pipe(pipe, dir="cached_pipe")
|
116 |
+
print("Start oneflow compiling...")
|
117 |
+
start_compile = time.time()
|
118 |
+
pipe = compile_pipe(pipe)
|
119 |
+
# run once to trigger compilation
|
120 |
+
image = pipe(
|
121 |
+
prompt="street style, detailed, raw photo, woman, face, shot on CineStill 800T",
|
122 |
+
height=512,
|
123 |
+
width=512,
|
124 |
+
num_inference_steps=10,
|
125 |
+
output_type="pil",
|
126 |
+
).images
|
127 |
+
image[0].save(f"test_image.png")
|
128 |
+
compile_time = time.time() - start_compile
|
129 |
+
#self.base_model_pipeline.to("cpu")
|
130 |
+
# save the compiled pipe
|
131 |
+
save_pipe(pipe, dir="cached_pipe")
|
132 |
+
self.base_model_pipeline = pipe
|
133 |
+
print(f"OneDiff compile in {compile_time}s")
|
134 |
+
|
135 |
+
def load_base_model(self, config_path):
|
136 |
+
"""Load base model and return the pipeline."""
|
137 |
+
start = time.time()
|
138 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
139 |
+
cfg = json.load(f)
|
140 |
+
|
141 |
+
model_version = cfg.get("model_version", self.model_version)
|
142 |
+
ckpt_dir = snapshot_download(repo_id=cfg["model_id"], local_files_only=False)
|
143 |
+
|
144 |
+
if model_version == "1.5":
|
145 |
+
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
|
146 |
+
pipe = StableDiffusionPipeline.from_pretrained(ckpt_dir, vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True)
|
147 |
+
else:
|
148 |
+
|
149 |
+
#vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
|
150 |
+
vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
|
151 |
+
|
152 |
+
pipe = DiffusionPipeline.from_pretrained(
|
153 |
+
ckpt_dir,
|
154 |
+
vae=vae,
|
155 |
+
#unet=unet,
|
156 |
+
torch_dtype=torch.bfloat16,
|
157 |
+
use_safetensors=True,
|
158 |
+
variant="fp16",
|
159 |
+
custom_pipeline = "lpw_stable_diffusion_xl",
|
160 |
+
)
|
161 |
+
|
162 |
+
clip_skip = cfg.get("clip_skip", 1)
|
163 |
+
# Adjust clip skip for XL (assumed not relevant for SD 1.5)
|
164 |
+
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
|
165 |
+
|
166 |
+
load_time = round(time.time() - start, 2)
|
167 |
+
print(f"Base model loaded in {load_time}s")
|
168 |
+
return pipe
|
169 |
+
|
170 |
+
def preload_loras(self):
|
171 |
+
"""Preload all LoRAs marked as 'preload=True' and store for later use."""
|
172 |
+
for lora_name, lora_info in self.lora_load_options.items():
|
173 |
+
try:
|
174 |
+
start = time.time()
|
175 |
+
|
176 |
+
# Find the corresponding LoRA in index.json
|
177 |
+
lora_index_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
|
178 |
+
if not lora_index_info:
|
179 |
+
raise ValueError(f"LoRA {lora_name} not found in index.json.")
|
180 |
+
|
181 |
+
# Check if the LoRA base model matches the current model version
|
182 |
+
if self.model_version not in lora_info['base_model'] or not lora_info.get('preload', False):
|
183 |
+
print(f"Skipping {lora_name} as it's not compatible with the current model version.")
|
184 |
+
continue
|
185 |
+
|
186 |
+
# Load LoRA weights from the specified path
|
187 |
+
weight_path = download_from_hf(lora_index_info['path'], local_dir=None)
|
188 |
+
if not weight_path:
|
189 |
+
raise ValueError(f"Failed to download LoRA weights for {lora_name}")
|
190 |
+
load_time = round(time.time() - start, 2)
|
191 |
+
print(f"Downloaded {lora_name} in {load_time}s")
|
192 |
+
self.base_model_pipeline.load_lora_weights(
|
193 |
+
weight_path,
|
194 |
+
weight_name=lora_index_info["path"],
|
195 |
+
adapter_name=lora_name
|
196 |
+
)
|
197 |
+
|
198 |
+
# Store the preloaded LoRA name and weight for merging later
|
199 |
+
if lora_info.get("preload", False):
|
200 |
+
self.preloaded_loras.append({
|
201 |
+
"name": lora_name,
|
202 |
+
"weight": lora_info.get("weight", 1.0)
|
203 |
+
})
|
204 |
+
load_time = round(time.time() - start, 2)
|
205 |
+
print(f"Preloaded LoRA {lora_name} with weight {lora_info.get('weight', 1.0)} in {load_time}s.")
|
206 |
+
except Exception as e:
|
207 |
+
print(f"Lora {lora_name} not loaded, skipping... {e}")
|
208 |
+
|
209 |
+
def build_pipeline_with_lora(self, lora_list, sampler="DPM2 a", new_pipeline=False):
|
210 |
+
"""Build the pipeline with specific LoRAs, loading any that are not preloaded."""
|
211 |
+
# Deep copy the base pipeline
|
212 |
+
start = time.time()
|
213 |
+
if new_pipeline:
|
214 |
+
temp_pipeline = copy.deepcopy(self.base_model_pipeline)
|
215 |
+
else:
|
216 |
+
temp_pipeline = self.base_model_pipeline
|
217 |
+
copy_time = round(time.time() - start, 2)
|
218 |
+
print(f"pipeline copied in {copy_time}s")
|
219 |
+
# Track LoRAs to be loaded dynamically
|
220 |
+
dynamic_loras = []
|
221 |
+
|
222 |
+
# Check if any LoRAs in lora_list need to be loaded dynamically
|
223 |
+
for lora_name in lora_list:
|
224 |
+
if not any(l['name'] == lora_name for l in self.preloaded_loras):
|
225 |
+
lora_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
|
226 |
+
if lora_info and self.model_version in lora_info["attr"].get("base_model", []):
|
227 |
+
dynamic_loras.append({
|
228 |
+
"name": lora_name,
|
229 |
+
"filename": lora_info["path"],
|
230 |
+
"scale": 1.0 # Assuming default weight as 1.0 for dynamic LoRAs
|
231 |
+
})
|
232 |
+
|
233 |
+
# Fuse preloaded and dynamic LoRAs
|
234 |
+
all_loras = [{"name": x["name"], "scale": x["weight"], "preloaded": True} for x in self.preloaded_loras] + dynamic_loras
|
235 |
+
set_lora_weights(temp_pipeline, all_loras,False)
|
236 |
+
|
237 |
+
build_time = round(time.time() - start, 2)
|
238 |
+
print(f"Pipeline built with LoRAs in {build_time}s.")
|
239 |
+
|
240 |
+
# Define samplers
|
241 |
+
samplers = {
|
242 |
+
"Euler a": EulerAncestralDiscreteScheduler.from_config(temp_pipeline.scheduler.config),
|
243 |
+
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(temp_pipeline.scheduler.config, use_karras_sigmas=True),
|
244 |
+
"DPM2 a": DPMSolverMultistepScheduler.from_config(temp_pipeline.scheduler.config)
|
245 |
+
}
|
246 |
+
|
247 |
+
# Set the scheduler based on the selected sampler
|
248 |
+
temp_pipeline.scheduler = samplers[sampler]
|
249 |
+
|
250 |
+
# Move the final pipeline to the GPU
|
251 |
+
temp_pipeline
|
252 |
+
return temp_pipeline
|
253 |
+
|
254 |
+
def release(self, temp_pipeline):
|
255 |
+
"""Release the deepcopied pipeline to recycle memory."""
|
256 |
+
del temp_pipeline
|
257 |
+
torch.cuda.empty_cache()
|
258 |
+
print("Memory released and cache cleared.")
|
259 |
+
|
260 |
+
|
261 |
+
# Hugging Face file download function - returns only file path
|
262 |
+
def download_from_hf(filename, local_dir=None):
|
263 |
+
try:
|
264 |
+
file_path = hf_hub_download(
|
265 |
+
filename=filename,
|
266 |
+
repo_id=DATASET_ID,
|
267 |
+
repo_type="dataset",
|
268 |
+
revision="main",
|
269 |
+
local_dir=local_dir,
|
270 |
+
local_files_only=False, # Attempt to load from cache if available
|
271 |
+
)
|
272 |
+
return file_path # Return file path only
|
273 |
+
except Exception as e:
|
274 |
+
print(f"Failed to load {filename} from Hugging Face: {str(e)}")
|
275 |
+
return None
|
276 |
+
|
277 |
+
|
278 |
+
# Function to load and fuse LoRAs
|
279 |
+
def set_lora_weights(pipe, lorajson: list[dict], fuse=False):
|
280 |
+
try:
|
281 |
+
if not lorajson or not isinstance(lorajson, list):
|
282 |
+
return
|
283 |
+
|
284 |
+
a_list = []
|
285 |
+
w_list = []
|
286 |
+
for d in lorajson:
|
287 |
+
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None":
|
288 |
+
continue
|
289 |
+
|
290 |
+
k = d["name"]
|
291 |
+
if not d.get("preloaded", False):
|
292 |
+
start = time.time()
|
293 |
+
weight_path = download_from_hf(d['filename'], local_dir=None)
|
294 |
+
if weight_path:
|
295 |
+
pipe.load_lora_weights(weight_path, weight_name=d['filename'], adapter_name=k)
|
296 |
+
|
297 |
+
load_time = round(time.time() - start, 2)
|
298 |
+
print(f"LoRA {k} loaded in {load_time}s.")
|
299 |
+
|
300 |
+
a_list.append(k)
|
301 |
+
w_list.append(d["scale"])
|
302 |
+
|
303 |
+
if not a_list:
|
304 |
+
return
|
305 |
+
|
306 |
+
start = time.time()
|
307 |
+
pipe.set_adapters(a_list, adapter_weights=w_list)
|
308 |
+
if fuse:
|
309 |
+
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
310 |
+
fuse_time = round(time.time() - start, 2)
|
311 |
+
print(f"LoRAs fused in {fuse_time}s.")
|
312 |
+
except Exception as e:
|
313 |
+
print(f"External LoRA Error: {e}")
|
314 |
+
raise Exception(f"External LoRA Error: {e}") from e
|