Spaces:
Starting
on
A100
Starting
on
A100
File size: 9,028 Bytes
d72e6ae 892e2f9 d72e6ae 632f592 ab391c2 d72e6ae b225b76 632f592 ab391c2 d72e6ae cfa89e3 3f18689 5123979 3f18689 9a5c3c2 c5cf0dd fea8645 8cbd82e 9a5c3c2 fb56e7c 9a5c3c2 cfa89e3 1f2defa d72e6ae b225b76 d72e6ae 0f3cc51 892e2f9 ab391c2 b06da2c ffd7012 0f3cc51 d72e6ae 062ca1d 632f592 d72e6ae 062ca1d d72e6ae f81694f 1f732b8 4aafa13 93fda42 ab391c2 93fda42 fc4a559 d72e6ae fc4a559 509eefc fc4a559 aede1bb d72e6ae 861cd57 d72e6ae 304de92 632f592 d72e6ae 632f592 d72e6ae 632f592 d72e6ae 3304e16 1f732b8 3304e16 d72e6ae 5c9b987 d72e6ae 5c9b987 d72e6ae d4793df d72e6ae d4793df d72e6ae c7feb81 f3687e0 c7feb81 f3687e0 14ddc53 f3687e0 c7feb81 f3687e0 c7feb81 fc4a559 d72e6ae a3dd2de 632f592 837ed4a 67fdfd0 5d4d177 e28c14b a2692eb 0b96ee5 632f592 d72e6ae a3dd2de 632f592 d0eec81 fc4a559 a3dd2de ab391c2 d72e6ae ab391c2 721bf9a ab391c2 721bf9a ab391c2 93fda42 ab391c2 1f2defa 632f592 ab391c2 1f2defa ab391c2 93fda42 892e2f9 93fda42 892e2f9 871e408 dcc51de 892e2f9 c7feb81 892e2f9 93fda42 892e2f9 93fda42 892e2f9 93fda42 892e2f9 0d3291b 892e2f9 93fda42 892e2f9 93fda42 892e2f9 93fda42 892e2f9 93fda42 892e2f9 298affb 892e2f9 298affb 892e2f9 93fda42 f9b4329 d72e6ae f9b4329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
from sys import exit
import torch
import trl
from transformers import (
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from itertools import islice
BATCH_SIZE = 8
EPOCHS = 1
LEARNING_RATE = 2e-4
FACTOR = 12 ** 3 // 3
MAX_SEQ_LENGTH = 128
VOCAB_SIZE = 52000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
INIT = 0
SHARD_SIZE = int(2e+6)
FP16 = True
WARMUP_STEPS = 50
WEIGHT_DECAY = 1e-3
GRADIENT_ACCUMULATION_STEPS = 4
PUSH_TO_HUB = True
class Space:
def __init__(self):
self.api = HfApi()
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
space = Space()
def load_data():
if not INSTRUCT_FINETUNE_BOOL:
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
start = INIT * SHARD_SIZE
dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
else:
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
start = INIT * SHARD_SIZE
dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
return dataset
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
if INSTRUCT_FINETUNE_BOOL:
special_tokens.extend(["<|user|>", "<|bot|>", "<|end|>"])
tokenizer.train_from_iterator(
training_corpus,
vocab_size=VOCAB_SIZE,
min_frequency=2,
special_tokens=special_tokens
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
return fast_tokenizer
def load_tokenizer():
return AutoTokenizer.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
def get_training_corpus(dataset):
for i in range(0, len(dataset['text']), 1000):
yield dataset['text'][i : i + 1000]
def format_prompts(examples, tokenizer, isinst):
texts = []
for text in examples['text']:
if isinst:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "").strip()
response = parts[i + 1].replace("<|bot|>", "").strip()
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
texts.append(formatted_conversation)
else:
texts.append(tokenizer.bos_token + text + tokenizer.eos_token)
return {"text": texts}
def create_model(tokenizer):
config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=FACTOR,
intermediate_size=FACTOR * 4,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=MAX_SEQ_LENGTH,
rms_norm_eps=1e-5,
initializer_range=0.02,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
return LlamaForCausalLM(config)
def load_model():
return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
def configure_tokenizer(tokenizer):
special_tokens = {
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>"
}
if INSTRUCT_FINETUNE_BOOL:
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
tokenizer.add_special_tokens(special_tokens)
if INSTRUCT_FINETUNE_BOOL:
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
tokenizer.chat_template = chat_template
def update_tokenizer(tokenizer, dataset, batch_size=1000):
existing_vocab = tokenizer.get_vocab()
oov_tokens = set()
for i in range(0, len(dataset['text']), batch_size):
batch = dataset['text'][i:i + batch_size]
for text in batch:
token_ids = tokenizer.encode(text, add_special_tokens=False)
for token_id in token_ids:
token = tokenizer.decode([token_id])
if token.strip() and token not in existing_vocab:
oov_tokens.add(token)
if oov_tokens:
num_added = tokenizer.add_tokens(list(oov_tokens))
return num_added
return 0
def train_model(model, tokenizer, dataset, push, isinst):
args = TrainingArguments(
output_dir="model",
num_train_epochs=EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
optim="adamw_torch",
warmup_steps=WARMUP_STEPS,
weight_decay=WEIGHT_DECAY,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
fp16=FP16,
save_steps=int(1e+10),
logging_steps=5000,
evaluation_strategy="no",
eval_steps=2000,
save_total_limit=2,
)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
)
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
trainer = trl.SFTTrainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=dataset,
dataset_text_field='text',
max_seq_length=MAX_SEQ_LENGTH,
optimizers=(optimizer, scheduler)
)
train = trainer.train()
trained_model = trainer.model
trained_tokenizer = trainer.tokenizer
if push:
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
msg = f"Training loss: {train.training_loss:.4f}"
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
else:
trained_model.save_pretrained("model")
trained_tokenizer.save_pretrained("tokenizer")
def main(push_to_hub=True, is_inst_finetune=False):
print("Loading Data..")
dataset = load_data()
print("Loaded data.")
if not is_inst_finetune and INIT == 0:
print("Making Corpus..")
training_corpus = get_training_corpus(dataset)
print("Made Corpus.")
print("Making Tokenizer..")
tokenizer = create_tokenizer(training_corpus)
print("Made Tokenizer.")
else:
print("Loading Tokenizer..")
tokenizer = load_tokenizer()
print("Loaded Tokenizer.")
# print("Adding Tokens..")
# num_new_tokens = update_tokenizer(tokenizer, dataset)
# print(f"Added {num_new_tokens} new tokens to the vocabulary")
if INIT == 0:
print("Adding Special Tokens..")
configure_tokenizer(tokenizer)
print("Added Tokens.")
if is_inst_finetune:
print("Loading Model..")
model = load_model()
print("Loaded Model.")
else:
if INIT == 0:
print("Creating Model..")
else:
print("Loading Model..")
model = create_model(tokenizer) if INIT == 0 else load_model()
print("Done.")
print("Resizing Token Embeddings..")
model.resize_token_embeddings(len(tokenizer))
print("Done.")
print("Training Model..")
train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
raise Exception
if __name__ == "__main__":
try:
main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
except:
space.pause() |