Spaces:
Starting
on
A100
Starting
on
A100
nroggendorff
commited on
Commit
•
d72e6ae
1
Parent(s):
928e52a
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import trl
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast
|
7 |
+
from datasets import load_dataset
|
8 |
+
from tokenizers import ByteLevelBPETokenizer
|
9 |
+
|
10 |
+
MAX_SEQ_LENGTH = 128
|
11 |
+
BATCH_SIZE = 256
|
12 |
+
EPOCHS = 8
|
13 |
+
LEARNING_RATE = 1e-4
|
14 |
+
FP16 = True
|
15 |
+
FACTOR = 2
|
16 |
+
VOCAB_SIZE = 3200
|
17 |
+
INPUT_DATASET = "nroggendorff/elephant"
|
18 |
+
OUTPUT_REPO = "smallama"
|
19 |
+
|
20 |
+
def load_data():
|
21 |
+
dataset = load_dataset(INPUT_DATASET, split="train")
|
22 |
+
return dataset
|
23 |
+
|
24 |
+
def create_tokenizer(training_corpus):
|
25 |
+
tokenizer = ByteLevelBPETokenizer()
|
26 |
+
tokenizer.train_from_iterator(
|
27 |
+
training_corpus,
|
28 |
+
vocab_size=VOCAB_SIZE,
|
29 |
+
min_frequency=2,
|
30 |
+
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
|
31 |
+
)
|
32 |
+
|
33 |
+
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
34 |
+
return fast_tokenizer
|
35 |
+
|
36 |
+
def get_training_corpus(dataset):
|
37 |
+
for i in range(0, len(dataset), 1000):
|
38 |
+
yield dataset[i : i + 1000]["text"]
|
39 |
+
|
40 |
+
def format_prompts(examples, tokenizer):
|
41 |
+
texts = []
|
42 |
+
for text in examples['text']:
|
43 |
+
conversation = []
|
44 |
+
parts = text.split('<|end|>')
|
45 |
+
for i in range(0, len(parts) - 1, 2):
|
46 |
+
prompt = parts[i].replace("<|user|>", "")
|
47 |
+
response = parts[i + 1].replace("<|bot|>", "")
|
48 |
+
conversation.append({"role": "user", "content": prompt})
|
49 |
+
conversation.append({"role": "assistant", "content": response})
|
50 |
+
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
|
51 |
+
texts.append(formatted_conversation)
|
52 |
+
return {"text": texts}
|
53 |
+
|
54 |
+
def create_model(tokenizer):
|
55 |
+
config = LlamaConfig(
|
56 |
+
vocab_size=tokenizer.vocab_size,
|
57 |
+
hidden_size=FACTOR,
|
58 |
+
intermediate_size=FACTOR * 2,
|
59 |
+
num_hidden_layers=max(1, FACTOR // 64),
|
60 |
+
num_attention_heads=max(1, FACTOR // 64),
|
61 |
+
max_position_embeddings=MAX_SEQ_LENGTH,
|
62 |
+
rms_norm_eps=1e-6,
|
63 |
+
initializer_range=0.02,
|
64 |
+
use_cache=True,
|
65 |
+
pad_token_id=tokenizer.pad_token_id,
|
66 |
+
bos_token_id=tokenizer.bos_token_id,
|
67 |
+
eos_token_id=tokenizer.eos_token_id,
|
68 |
+
tie_word_embeddings=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
model = LlamaForCausalLM(config)
|
72 |
+
return model
|
73 |
+
|
74 |
+
def configure_tokenizer(tokenizer):
|
75 |
+
special_tokens = {
|
76 |
+
"bos_token": "<s>",
|
77 |
+
"eos_token": "</s>",
|
78 |
+
"unk_token": "<unk>",
|
79 |
+
"pad_token": "<pad>",
|
80 |
+
"mask_token": "<mask>",
|
81 |
+
"additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
|
82 |
+
}
|
83 |
+
tokenizer.add_special_tokens(special_tokens)
|
84 |
+
|
85 |
+
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
86 |
+
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
87 |
+
|
88 |
+
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
|
89 |
+
tokenizer.chat_template = chat_template
|
90 |
+
|
91 |
+
def train_model(model, tokenizer, dataset):
|
92 |
+
args = TrainingArguments(
|
93 |
+
output_dir="model",
|
94 |
+
num_train_epochs=EPOCHS,
|
95 |
+
per_device_train_batch_size=BATCH_SIZE,
|
96 |
+
learning_rate=LEARNING_RATE,
|
97 |
+
fp16=FP16,
|
98 |
+
optim="sgd"
|
99 |
+
)
|
100 |
+
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer), batched=True)
|
101 |
+
trainer = trl.SFTTrainer(
|
102 |
+
model=model,
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
args=args,
|
105 |
+
train_dataset=dataset,
|
106 |
+
dataset_text_field='text',
|
107 |
+
max_seq_length=MAX_SEQ_LENGTH
|
108 |
+
)
|
109 |
+
trainer.train()
|
110 |
+
|
111 |
+
trained_model = trainer.model
|
112 |
+
trained_tokenizer = trainer.tokenizer
|
113 |
+
|
114 |
+
repo_id = OUTPUT_REPO
|
115 |
+
trained_model.push_to_hub(repo_id)
|
116 |
+
trained_tokenizer.push_to_hub(repo_id)
|
117 |
+
|
118 |
+
def main():
|
119 |
+
dataset = load_data()
|
120 |
+
training_corpus = get_training_corpus(dataset)
|
121 |
+
tokenizer = create_tokenizer(training_corpus)
|
122 |
+
configure_tokenizer(tokenizer)
|
123 |
+
model = create_model(tokenizer)
|
124 |
+
train_model(model, tokenizer, dataset)
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
128 |
+
raise RuntimeError("The script is finished.")
|