Spaces:
Sleeping
Sleeping
File size: 30,420 Bytes
17cde60 301fee0 17cde60 301fee0 17cde60 c87d7cd 17cde60 c94e335 301fee0 c94e335 afa07cf c94e335 17cde60 c87d7cd 17cde60 301fee0 17cde60 301fee0 17cde60 301fee0 17cde60 301fee0 17cde60 301fee0 17cde60 c794041 17cde60 c794041 17cde60 3a64875 17cde60 3a64875 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 301fee0 17cde60 81ddd61 44d1a52 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 06e1dab 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 06e1dab 0224aa7 06e1dab 0224aa7 06e1dab 17cde60 3a64875 17cde60 0224aa7 c94e335 17cde60 0224aa7 17cde60 3a64875 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 c94e335 17cde60 5cd173e 17cde60 c94e335 17cde60 c94e335 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 17cde60 0224aa7 bda0f5a 0224aa7 f120eee 17cde60 44d1a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
import gradio as gr
import re
import json
import numpy as np
import nltk
import stanza
from stanza.models.constituency.parse_tree import Tree
from transformers import AutoTokenizer, AutoModelForTokenClassification, TokenClassificationPipeline
from sentence_transformers import CrossEncoder
from autocorrect import Speller
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.nn.utils.rnn import pad_sequence
from openai import OpenAI
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
import os
# ***************************** Load needed models *****************************
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency')
pos_tokenizer = AutoTokenizer.from_pretrained("QCRI/bert-base-multilingual-cased-pos-english")
pos_model = AutoModelForTokenClassification.from_pretrained("QCRI/bert-base-multilingual-cased-pos-english")
#sentences_similarity_model = CrossEncoder('cross-encoder/stsb-roberta-base')
sentences_similarity_model = CrossEncoder('WillHeld/roberta-base-stsb')
nli_model = BertForSequenceClassification.from_pretrained("nouf-sst/bert-base-MultiNLI", use_auth_token="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")
nli_tokenizer = BertTokenizer.from_pretrained("nouf-sst/bert-base-MultiNLI", use_auth_token="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", do_lower_case=True)
# ***************************** GPT API *****************************
client = OpenAI(
api_key=os.getenv("OpenAI"),
)
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def completion_with_backoff(**kwargs):
return client.chat.completions.create(**kwargs)
def prompt(prompt_message, bad_smell):
message = [
{
"role": "system",
"content": prompt_message
},
{
"role": "user",
"content": bad_smell
}
]
completion = completion_with_backoff(
model="gpt-3.5-turbo",
messages=message,
temperature= 0.2,
)
return completion.choices[0].message.content
# ***************************** TGRL Parsing *****************************
def parse_tgrl(file_obj):
with open(file_obj.name, 'r') as f:
tgrl_text = f.read()
tgrl_text = tgrl_text.replace('\t', '')
tgrl_text = tgrl_text.replace('\n', '')
return tgrl_text
def extract_elements(tgrl_text):
# Extract actors
actors = re.findall("(?:.*?actor\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
# Extract goals
goals = re.findall("(?:.*?goal\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
# Extract softGoals
softGoals = re.findall("(?:.*?softGoal\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
# Extract tasks
tasks = re.findall("(?:.*?task\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
# Extract resources
resources = re.findall("(?:.*?resource\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
elements = {
"actors": actors,
"goals": goals,
"softGoals": softGoals,
"tasks": tasks,
"resources": resources
}
# get elements per actor
elements_per_actor = {}
for goal in goals:
corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(goal))
corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
if corresponding_actor not in elements_per_actor:
elements_per_actor[corresponding_actor] = []
elements_per_actor[corresponding_actor].append(goal)
for softGoal in softGoals:
corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(softGoal))
corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
if corresponding_actor not in elements_per_actor:
elements_per_actor[corresponding_actor] = []
elements_per_actor[corresponding_actor].append(softGoal)
for task in tasks:
corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(task))
corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
if corresponding_actor not in elements_per_actor:
elements_per_actor[corresponding_actor] = []
elements_per_actor[corresponding_actor].append(task)
# get decomposed elements
new_tgrl_text = tgrl_text
decomposed_elements = {}
main_elements_1 = re.findall("\w+(?=\s+decomposedBy)", new_tgrl_text)
for main_element in main_elements_1:
sub_element_1 = (re.findall(main_element+"\s*(?: decomposedBy )([A-Za-z\s]*)", new_tgrl_text)[0])
sub_element_1 = sub_element_1.replace(" ", "")
sub_element_2 = (re.findall(main_element+"\s*(?: decomposedBy )"+ sub_element_1 +",\s*([A-Za-z\s]*)", new_tgrl_text)[0])
new_tgrl_text = new_tgrl_text.replace(main_element+" decomposedBy "+sub_element_1+", "+sub_element_2+";", '')
decomposed_elements[main_element] = [sub_element_1, sub_element_2]
# Replace elements IDs with names
new_decomposed_elements = {}
for key, _ in decomposed_elements.items():
new_key = re.findall("(?:"+key+"\s*{\s*name\s=\s\")([A-Za-z\s]*)", tgrl_text)[0]
new_values = []
for element in decomposed_elements[key]:
new_value = re.findall("(?:"+element+"\s*{\s*name\s=\s\")([A-Za-z\s;.,!?:-]*)", tgrl_text)[0]
new_values.append(new_value)
new_decomposed_elements[new_key] = new_values
return elements, elements_per_actor, new_decomposed_elements
# ************************************************************************
# ************************* Bad Smells Detection *************************
# ########### Long Elements ###########
def get_long_elements(elements, size_threshold): # Using RegEx
long_elements = []
for key, value in elements.items():
for i in range(0, len(elements[key])):
if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
long_elements.append(elements[key][i])
if long_elements:
output = ""
for long_element in long_elements:
refactored_element = prompt(
'''You are a specialist in English linguistics.
You will be provided with a sentence, and your task is to summarize it in''' + str(size_threshold) + ''' words or fewer.
Comply with the following conditions:
(1) Do not convert a verb phrase to a noun phrase, and vice versa.
(2) Change as few words as possible.
Answer with the new sentence only.''',
long_element)
output = output + '"' + long_element + '" should be refactored to "' + refactored_element + '"\n'
#long_elements = "\n".join(long_elements)
return "Lengthy elements:\n" + output
else:
return ""
# #####################################
# ######### Complex Sentences #########
def is_complex_sentence(sentence):
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency')
doc = nlp(sentence)
for sentence in doc.sentences:
unique_constituent_labels = Tree.get_unique_constituent_labels(sentence.constituency)
if 'SBAR' in unique_constituent_labels:
return True
else:
return False
def get_complex_sentences(elements):
complex_sentences = []
for key, value in elements.items():
for i in range(0, len(elements[key])):
if is_complex_sentence(elements[key][i]):
complex_sentences.append(elements[key][i])
if complex_sentences:
output = ""
for complex_sentence in complex_sentences:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
A complex sentence is a sentence with one independent clause and at least one dependent clause. A simple sentence has a single independent clause.
You will be provided with a complex sentence, and your task is to make it a simple sentence.
Do not convert a verb phrase to a noun phrase, and vice versa.
Answer with the new sentence only.
''', complex_sentence)
output = output + '"' + complex_sentence + '" should be refactored to "' + refactored_element + '"\n'
return "Complex elements:\n" + output
else:
return ""
# #####################################
# ########## Punctuations #########
def get_punctuations(elements):
punctuations = []
for key, value in elements.items():
for i in range(0, len(elements[key])):
if len(re.findall("[^\s\w\d-]", elements[key][i])) > 0:
punctuations.append(elements[key][i])
if punctuations:
output = ""
for punctuation in punctuations:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence, and your task is to remove all punctuation marks.
Answer with the new sentence only.''', punctuation)
output = output + '"' + punctuation + '" should be refactored to "' + refactored_element + '"\n'
#punctuations = "\n".join(punctuations)
return "Punctuation-marked elements:\n" + output
else:
return ""
# #################################
# ########## Incorrect Actor Syntax ##########
def check_verb_or_noun_phrase(sentence):
result = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence, and your task is to determine whether the sentence is a noun phrase or a verb phrase.
Answer with "noun phrase" or "verb phrase" and your reasons.
Use JSON format with keys "answer" and "reason".''', sentence)
result = json.loads(result)
return result["answer"]
# def find_non_NPs(sentences):
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
# outputs = pipeline(sentences)
# Non_NPs = []
# for idx, output in enumerate(outputs):
# if output[0]['entity'].startswith('V'):
# Non_NPs.append(sentences[idx])
# return Non_NPs
def check_actor_syntax(actors):
incorrect_actors_syntax = []
for actor in actors:
result = check_verb_or_noun_phrase(actor)
if result == "verb phrase":
incorrect_actors_syntax.append(actor)
if incorrect_actors_syntax:
output = ""
for incorrect_actor_syntax in incorrect_actors_syntax:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence that is a verb phrase, and your task is to make it a noun pharse representing an actor.
A noun phrase should start with a noun.
Example of actors: System, PC User, and Privacy Officer.
Answer with the new sentence only.''', incorrect_actor_syntax)
output = output + '"' + incorrect_actor_syntax + '" should be refactored to "' + refactored_element + '"\n'
#incorrect_actor_syntax = "\n".join(incorrect_actor_syntax)
return "Incorrect actors syntax:\n" + output
else:
return ""
# ############################################
# ########## Incorrect Goal Syntax ###########
def check_goal_syntax(goals):
incorrect_goals_syntax = []
for goal in goals:
result = check_verb_or_noun_phrase(goal)
if result == "verb phrase":
incorrect_goals_syntax.append(goal)
if incorrect_goals_syntax:
output = ""
for incorrect_goal_syntax in incorrect_goals_syntax:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
A noun phrase should start with a noun.
For example: high data quality, fast response time, and course registration.
Answer with the new sentence only.''', incorrect_goal_syntax)
output = output + '"' + incorrect_goal_syntax + '" should be refactored to "' + refactored_element + '"\n'
#incorrect_goal_syntax = "\n".join(incorrect_goal_syntax)
return "Incorrect goals syntax:\n" + output
else:
return ""
# ############################################
# ########## Incorrect Softgoal Syntax ###########
def check_softgoal_syntax(softgoals):
incorrect_softgoals_syntax = []
for softgoal in softgoals:
result = check_verb_or_noun_phrase(softgoal)
if result == "verb phrase":
incorrect_softgoals_syntax.append(softgoal)
if incorrect_softgoals_syntax:
output = ""
for incorrect_softgoal_syntax in incorrect_softgoals_syntax:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
A noun phrase should start with a noun.
For example: high data quality, fast response time, and course registration.
Answer with the new sentence only.''', incorrect_softgoal_syntax)
output = output + '"' + incorrect_softgoal_syntax + '" should be refactored to "' + refactored_element + '"\n'
#incorrect_softgoal_syntax = "\n".join(incorrect_softgoal_syntax)
return "Incorrect softgoals syntax:\n" + output
else:
return ""
# ############################################
# ########## Incorrect Task Syntax ###########
# def find_NPs(sentences):
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
# outputs = pipeline(sentences)
# NPs = []
# for idx, output in enumerate(outputs):
# if not output[0]['entity'].startswith('V'):
# NPs.append(sentences[idx])
# return NPs
def check_task_syntax(tasks):
incorrect_tasks_syntax = []
for task in tasks:
result = check_verb_or_noun_phrase(task)
if result == "noun phrase":
incorrect_tasks_syntax.append(task)
if incorrect_tasks_syntax:
output = ""
for incorrect_task_syntax in incorrect_tasks_syntax:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence that is not a verb phrase, and your task is to make it a verb pharse representing a task.
A verb phrase should start with a verb.
For example: provide maintenance services, help co-workers, and enhance quality.
Answer with the new sentence only.''', incorrect_task_syntax)
output = output + '"' + incorrect_task_syntax + '" should be refactored to "' + refactored_element + '"\n'
#incorrect_task_syntax = "\n".join(incorrect_task_syntax)
return "Incorrect tasks syntax:\n" + output
else:
return ""
# ############################################
# ########## Incorrect Resource Syntax ###########
def check_resource_syntax(resources):
if len(resources) == 0:
return ""
#incorrect_resources_syntax = find_non_NPs(resources)
incorrect_resources_syntax = []
for resource in resources:
result = check_verb_or_noun_phrase(resource)
if result == "verb phrase":
incorrect_resources_syntax.append(resource)
if incorrect_resources_syntax:
output = ""
for incorrect_resource_syntax in incorrect_resources_syntax:
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a resource.
A noun phrase should start with a noun.
For example: internet, database, and files system.
Answer with the new sentence only.''', incorrect_resource_syntax)
output = output + '"' + incorrect_resource_syntax + '" should be refactored to "' + refactored_element + '"\n'
#incorrect_resource_syntax = "\n".join(incorrect_resource_syntax)
return "Incorrect resources syntax:\n" + output
else:
return ""
# ############################################
# ########## Similarity ###########
def get_similar_elements(elements_per_actor, similarity_threshold):
# Prepare sentence pair array
sentence_pairs = []
for key, value in elements_per_actor.items():
for i in range(len(elements_per_actor[key])):
for j in range(i+1,len(elements_per_actor[key])):
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
# Predict semantic similarity
semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)
similar_elements = []
for index, value in enumerate(sentence_pairs):
if semantic_similarity_scores[index] > similarity_threshold:
similar_elements.append(value)
#similar_elements.append('"'+value+'"')
#semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]
if similar_elements:
result_string = ""
for sublist in similar_elements:
result_string += ' and '.join(f'"{item}"' for item in sublist) + '\n'
#similar_elements = [' and '.join('"' + ele + '"') for ele in similar_elements]
#similar_elements = "\n".join(similar_elements)
return "Similar elements:\n" + result_string
else:
return ""
return semantic_similarity
# #################################
# ########## Misspelling ###########
# def get_misspelled_words(sentence):
# spell = Speller(only_replacements=True)
# misspelled= []
# for word in sentence.split():
# correct_word = spell(word)
# if word != correct_word:
# misspelled.append([word, correct_word])
# return misspelled
def check_spelling(elements):
refactored_elements = []
for key, value in elements.items():
for i in range(0, len(elements[key])):
refactored_element = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a sentence and your task is to report any misspilled words and correct the spilling if needed.
Answer with "correct" or "misspilled". In case the sentence is misspilled, correct it with the right spelling.
Use a JSON format with keys 'original sentence', 'answer', and 'correct sentence'.
For example: {'original sentence': 'incraese value', 'answer': 'misspilled', 'correct sentence': 'increase value'}''', elements[key][i])
refactored_element = refactored_element.replace("'", '"')
refactored_element = json.loads(refactored_element)
if refactored_element['answer'] == 'misspilled':
refactored_elements.append('"' + refactored_element["original sentence"] + '" should be written as "' + refactored_element["correct sentence"] + '"')
if refactored_elements:
refactored_elements = "\n".join(refactored_elements)
return "Misspilled elements:\n" + refactored_elements
else:
return ""
# ##################################
# ########## NLI ###########
def do_nli(premise, hypothesis):
# Tokenization
token_ids = []
seg_ids = []
mask_ids = []
premise_id = nli_tokenizer.encode(premise, add_special_tokens = False)
hypothesis_id = nli_tokenizer.encode(hypothesis, add_special_tokens = False)
pair_token_ids = [nli_tokenizer.cls_token_id] + premise_id + [nli_tokenizer.sep_token_id] + hypothesis_id + [nli_tokenizer.sep_token_id]
premise_len = len(premise_id)
hypothesis_len = len(hypothesis_id)
segment_ids = torch.tensor([0] * (premise_len + 2) + [1] * (hypothesis_len + 1)) # sentence 0 and sentence 1
attention_mask_ids = torch.tensor([1] * (premise_len + hypothesis_len + 3)) # mask padded values
token_ids.append(torch.tensor(pair_token_ids))
seg_ids.append(segment_ids)
mask_ids.append(attention_mask_ids)
# Forward pass
token_ids = pad_sequence(token_ids, batch_first=True)
mask_ids = pad_sequence(mask_ids, batch_first=True)
seg_ids = pad_sequence(seg_ids, batch_first=True)
with torch.no_grad():
output = nli_model(token_ids,
token_type_ids=seg_ids,
attention_mask=mask_ids)
# Output predication
result = ""
prediction = np.argmax(output.logits.cpu().numpy()).flatten().item()
if prediction == 0:
result = "Entailment"
#print("Entailment")
elif prediction == 1:
result = "Contradiction"
#print("Contradiction")
elif prediction == 2:
result = "Neutral"
#print("Neutral")
return result
# Entailment
def check_entailment(decomposed_elements):
sentence_pairs = []
non_matching_elements = []
for key, value in decomposed_elements.items():
#print(key, value)
for i in decomposed_elements[key]:
#print(key, i)
sentence_pairs.append([key, i])
for sentence_pair in sentence_pairs:
result = do_nli(sentence_pair[0], sentence_pair[1])
print(result)
if result != "Entailment":
non_matching_elements.append(sentence_pair)
if non_matching_elements:
non_matching_elements = [' and '.join(ele) for ele in non_matching_elements]
non_matching_elements = "\n".join(non_matching_elements)
return "The following elements are miss matching:\n" + non_matching_elements
else:
return "There are no miss matched elements."
return result
# Contradiction
def check_for_linguistic_conflict(pairs):
pairs = ",".join(str(element) for element in pairs)
contradicting_pairs = []
result = prompt(
'''
You are a specialist in English linguistics.
You will be provided with a list of sentencses pair, and your task is to determine whether each pair can be conflicting or not.
For example: "Inrease quality of service" AND "Cut expenses" are conflicting because increasing quality usually requires spending money.
For each pair, answer with "yes" or "no" with your reason in short.
Use a list of dictionaries format with keys "pair" and "answer". Omit "reason" from your response.''', pairs)
result = result.replace("'", '"')
results = json.loads(result)
for result in results:
if result["answer"] == "yes":
contradicting_pairs.append(result["pair"])
return contradicting_pairs
def find_paths_between_elements(elements, start_element, end_element, visited, path=[]):
visited[start_element] = True
path.append(start_element)
if start_element == end_element:
yield list(path)
else:
for contrib in elements:
if contrib[1] in visited: ## added
if contrib[0] == start_element and not visited[contrib[1]]:
yield from find_paths_between_elements(elements, contrib[1], end_element, visited, path)
path.pop()
visited[start_element] = False
def check_contradiction(elements_per_actor, contributing_elements):
pairs_to_check_1 = []
pairs_to_check_2 = []
pairs_to_check_3 = []
all_values_contributing_elements = []
for values_list in contributing_elements.values():
all_values_contributing_elements.extend(values_list)
sentence_pairs = []
contradicting_elements = []
# case 1: contradicting elements contributing similarly to other elements
for key, value in elements_per_actor.items():
for i in range(len(elements_per_actor[key])):
for j in range(i+1,len(elements_per_actor[key])):
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
for sentence_pair in sentence_pairs:
contribution_scores = []
for contributing_element in all_values_contributing_elements:
if contributing_element[0] == sentence_pair[0] or contributing_element[0] == sentence_pair[1]:
if contributing_element[2] == "make":
contribution_score = 75
elif contributing_element[2] == "help":
contribution_score = 50
elif contributing_element[2] == "somePositive":
contribution_score = 25
elif contributing_element[2] == "unknown":
contribution_score = 0
elif contributing_element[2] == "someNegative":
contribution_score = -25
elif contributing_element[2] == "break":
contribution_score = -50
elif contributing_element[2] == "hurt":
contribution_score = -75
else:
contribution_score = int(contributing_element[2])
contribution_scores.append((contributing_element[0], contribution_score))
if len(contribution_scores) < 2:
pairs_to_check_1.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
else:
flag = 0
for pair in itertools.combinations(contribution_scores, r=2):
if pair[0][0] != pair[1][0]:
if pair[0][1] * pair[1][1] < 0:
flag = 1
if flag == 0:
pairs_to_check_2.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
# case 2: contradicting elements contributing similarly to each other, taking into considration the full path between the two elements
for key, value in elements_per_actor.items():
for element1 in value:
for element2 in value:
if element1 != element2:
visited = {e: False for e in value}
for path in find_paths_between_elements(all_values_contributing_elements, element1, element2, visited):
first_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[0] and contrib[1] == path[1]), None)
last_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[-2] and contrib[1] == path[-1]), None)
if first_edge_value is not None and last_edge_value is not None and int(first_edge_value) * int(last_edge_value) > 0:
pairs_to_check_3.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
pairs_to_check = pairs_to_check_1 + pairs_to_check_2 + pairs_to_check_3
# Initialize an empty list to store the divided lists
divided_lists = []
# Iterate over the long list and create sublists of 30 items each
for i in range(0, len(pairs_to_check), 30):
sublist = pairs_to_check[i:i + 30]
divided_lists.append(sublist)
for divided_list in divided_lists:
contradicting_elements = contradicting_elements + check_for_linguistic_conflict(divided_list)
if contradicting_elements:
# Using a set to store unique sublists
contradicting_elements = set(tuple(sublist) for sublist in contradicting_elements)
# Converting back to a list of lists
contradicting_elements = [list(sublist) for sublist in contradicting_elements]
contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
contradicting_elements = "\n".join(contradicting_elements)
return "Conflicting elements:\n" + contradicting_elements
else:
return ""
# ##########################
# ************************* User Interface *************************
def detect_bad_smells(tgrl_file, selected_bad_smells, size_threshold, similarity_threshold):
output = ""
tgrl_text = parse_tgrl(tgrl_file)
all_elements, elements_per_actor, decomposed_elements, contributing_elements = extract_elements(tgrl_text)
if 'Lengthy element' in selected_bad_smells:
print(output)
result = get_long_elements(all_elements, size_threshold)
if result != "":
output = output + result + "\n\n"
if 'Complex element' in selected_bad_smells:
result = get_complex_sentences(all_elements)
if result != "":
output = output + result + "\n\n"
if 'Punctuation-marked element' in selected_bad_smells:
result = get_punctuations(all_elements)
if result != "":
output = output + result + "\n\n"
if 'Incorrect actor syntax' in selected_bad_smells:
result = check_actor_syntax(all_elements['actors'])
if result != "":
output = output + result + "\n\n"
if 'Incorrect goal syntax' in selected_bad_smells:
result = check_goal_syntax(all_elements['goals'])
if result != "":
output = output + result + "\n\n"
if 'Incorrect softgoal syntax' in selected_bad_smells:
result = check_softgoal_syntax(all_elements['softGoals'])
if result != "":
output = output + result + "\n\n"
if 'Incorrect task syntax' in selected_bad_smells:
result = check_task_syntax(all_elements['tasks'])
if result != "":
output = output + result + "\n\n"
if 'Incorrect resource syntax' in selected_bad_smells:
result = check_resource_syntax(all_elements['resources'])
if result != "":
output = output + result + "\n\n"
if 'Similar elements' in selected_bad_smells:
result = get_similar_elements(elements_per_actor, similarity_threshold)
if result != "":
output = output + result + "\n\n"
if 'Misspelled element' in selected_bad_smells:
result = check_spelling(all_elements)
if result != "":
output = output + result + "\n\n"
if 'Goal/Task and Sub-goal/Sub-task mismatch' in selected_bad_smells:
result = check_entailment(decomposed_elements)
if result != "":
output = output + result + "\n\n"
if 'Conflicting elements' in selected_bad_smells:
result = check_contradiction(elements_per_actor, contributing_elements)
if result != "":
output = output + result + "\n\n"
return output
interface = gr.Interface(fn = detect_bad_smells,
inputs = [gr.File(label="TGRL File"),
gr.CheckboxGroup(["Lengthy element", "Complex element", "Punctuation-marked element", "Incorrect actor syntax", "Incorrect goal syntax", "Incorrect softgoal syntax", "Incorrect task syntax", "Incorrect resource syntax", "Similar elements", "Misspelled element", "Goal/Task and Sub-goal/Sub-task mismatch", "Conflicting elements"],
label="Which bad smells you want to detect and refactor?"),
gr.Slider(label= "Length threshold", value = 5, minimum = 2, maximum = 10, step = 1),
gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
outputs = [gr.Textbox(label= "Detected and refactored bad smells:")],
title = "TGRL Bad Smells Detection and Refactoring",
description = "Upload your .xgrl file and we will find the bad smells and refactor them for you!",
theme = gr.themes.Soft())
interface.launch(inline = False) |