Spaces:
Sleeping
Sleeping
Add refactoring component
Browse files
app.py
CHANGED
@@ -156,12 +156,23 @@ def get_long_elements(elements, size_threshold): # Using RegEx
|
|
156 |
for i in range(0, len(elements[key])):
|
157 |
if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
|
158 |
long_elements.append(elements[key][i])
|
159 |
-
|
160 |
if long_elements:
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
-
return "
|
165 |
# #####################################
|
166 |
|
167 |
# ######### Complex Sentences #########
|
@@ -178,18 +189,29 @@ def is_complex_sentence(sentence):
|
|
178 |
|
179 |
def get_complex_sentences(elements):
|
180 |
|
181 |
-
|
182 |
-
|
183 |
for key, value in elements.items():
|
184 |
for i in range(0, len(elements[key])):
|
185 |
if is_complex_sentence(elements[key][i]):
|
186 |
complex_sentences.append(elements[key][i])
|
187 |
-
|
188 |
if complex_sentences:
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
else:
|
192 |
-
return "
|
193 |
|
194 |
# #####################################
|
195 |
|
@@ -199,103 +221,200 @@ def get_punctuations(elements):
|
|
199 |
punctuations = []
|
200 |
|
201 |
for key, value in elements.items():
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
|
206 |
if punctuations:
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
else:
|
210 |
-
return "
|
211 |
# #################################
|
212 |
|
213 |
# ########## Incorrect Actor Syntax ##########
|
214 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
|
218 |
-
|
219 |
|
220 |
-
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
-
|
227 |
|
228 |
def check_actor_syntax(actors):
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
else:
|
236 |
-
return "
|
237 |
# ############################################
|
238 |
|
239 |
# ########## Incorrect Goal Syntax ###########
|
240 |
def check_goal_syntax(goals):
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
else:
|
248 |
-
return "
|
249 |
# ############################################
|
250 |
|
251 |
# ########## Incorrect Softgoal Syntax ###########
|
252 |
def check_softgoal_syntax(softgoals):
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
else:
|
260 |
-
return "
|
261 |
# ############################################
|
262 |
|
263 |
# ########## Incorrect Task Syntax ###########
|
264 |
-
def find_NPs(sentences):
|
265 |
|
266 |
-
|
267 |
|
268 |
-
|
269 |
|
270 |
-
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
|
276 |
-
|
277 |
|
278 |
def check_task_syntax(tasks):
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
else:
|
286 |
-
return "
|
287 |
# ############################################
|
288 |
|
289 |
# ########## Incorrect Resource Syntax ###########
|
290 |
def check_resource_syntax(resources):
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
else:
|
298 |
-
return "
|
299 |
# ############################################
|
300 |
|
301 |
# ########## Similarity ###########
|
@@ -309,56 +428,72 @@ def get_similar_elements(elements_per_actor, similarity_threshold):
|
|
309 |
for i in range(len(elements_per_actor[key])):
|
310 |
for j in range(i+1,len(elements_per_actor[key])):
|
311 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
312 |
-
|
313 |
-
# Predict semantic similarity
|
314 |
semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)
|
315 |
|
316 |
similar_elements = []
|
|
|
317 |
for index, value in enumerate(sentence_pairs):
|
318 |
if semantic_similarity_scores[index] > similarity_threshold:
|
319 |
similar_elements.append(value)
|
|
|
320 |
#semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]
|
321 |
|
322 |
if similar_elements:
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
326 |
else:
|
327 |
-
return "
|
328 |
|
329 |
return semantic_similarity
|
330 |
# #################################
|
331 |
|
332 |
# ########## Misspelling ###########
|
333 |
-
def get_misspelled_words(sentence):
|
334 |
|
335 |
-
|
336 |
|
337 |
-
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
|
344 |
-
|
345 |
|
346 |
def check_spelling(elements):
|
347 |
|
348 |
-
|
349 |
-
spelling_mistakes_string = ""
|
350 |
|
351 |
for key, value in elements.items():
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
-
|
|
|
|
|
|
|
|
|
362 |
# ##################################
|
363 |
|
364 |
# ########## NLI ###########
|
@@ -435,91 +570,228 @@ def check_entailment(decomposed_elements):
|
|
435 |
return result
|
436 |
|
437 |
# Contradiction
|
438 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
contradicting_elements = []
|
442 |
|
|
|
443 |
for key, value in elements_per_actor.items():
|
444 |
|
445 |
for i in range(len(elements_per_actor[key])):
|
446 |
for j in range(i+1,len(elements_per_actor[key])):
|
447 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
448 |
-
|
449 |
-
#print(sentence_pairs)
|
450 |
-
# Check contradiction
|
451 |
for sentence_pair in sentence_pairs:
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
|
457 |
if contradicting_elements:
|
|
|
|
|
|
|
|
|
|
|
458 |
contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
|
459 |
contradicting_elements = "\n".join(contradicting_elements)
|
460 |
-
|
|
|
461 |
else:
|
462 |
-
return "
|
463 |
# ##########################
|
464 |
|
465 |
# ************************* User Interface *************************
|
466 |
|
467 |
-
def
|
468 |
|
469 |
output = ""
|
470 |
|
471 |
tgrl_text = parse_tgrl(tgrl_file)
|
472 |
|
473 |
-
|
474 |
-
|
475 |
-
if '
|
476 |
-
output
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
if '
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
-
if 'Goals Syntax' in selected_bad_smells:
|
488 |
-
output = output + check_goal_syntax(elements['goals']) + "\n\n"
|
489 |
-
|
490 |
-
if 'Softgoals Syntax' in selected_bad_smells:
|
491 |
-
output = output + check_softgoal_syntax(elements['softGoals']) + "\n\n"
|
492 |
-
|
493 |
-
if 'Tasks Syntax' in selected_bad_smells:
|
494 |
-
output = output + check_task_syntax(elements['tasks']) + "\n\n"
|
495 |
-
|
496 |
-
if 'Resources Syntax' in selected_bad_smells:
|
497 |
-
output = output + check_resource_syntax(elements['resources']) + "\n\n"
|
498 |
-
|
499 |
-
if 'Similar Elements' in selected_bad_smells:
|
500 |
-
output = output + get_similar_elements(elements_per_actor, similarity_threshold) + "\n\n"
|
501 |
-
|
502 |
-
if 'Spelling Mistakes' in selected_bad_smells:
|
503 |
-
output = output + check_spelling(elements) + "\n\n"
|
504 |
-
|
505 |
-
if 'Goal-Subgoal Mismatch' in selected_bad_smells:
|
506 |
-
output = output + check_entailment(decomposed_elements) + "\n\n"
|
507 |
-
|
508 |
-
if 'Contradicting Elements' in selected_bad_smells:
|
509 |
-
output = output + check_contradiction(elements_per_actor) + "\n\n"
|
510 |
-
|
511 |
return output
|
512 |
|
513 |
|
514 |
-
interface = gr.Interface(fn =
|
515 |
inputs = [gr.File(label="TGRL File"),
|
516 |
-
gr.CheckboxGroup(["
|
517 |
-
label="Which bad smells you want to detect?"),
|
518 |
-
gr.Slider(label= "
|
519 |
gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
|
520 |
-
outputs = [gr.Textbox(label= "Detected bad smells:")],
|
521 |
-
title = "TGRL
|
522 |
-
description = "Upload your .xgrl file and we will find the bad smells for you!",
|
523 |
theme = gr.themes.Soft())
|
524 |
|
525 |
|
|
|
156 |
for i in range(0, len(elements[key])):
|
157 |
if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
|
158 |
long_elements.append(elements[key][i])
|
159 |
+
|
160 |
if long_elements:
|
161 |
+
output = ""
|
162 |
+
for long_element in long_elements:
|
163 |
+
refactored_element = prompt(
|
164 |
+
'''You are a specialist in English linguistics.
|
165 |
+
You will be provided with a sentence, and your task is to summarize it in''' + str(size_threshold) + ''' words or fewer.
|
166 |
+
Comply with the following conditions:
|
167 |
+
(1) Do not convert a verb phrase to a noun phrase, and vice versa.
|
168 |
+
(2) Change as few words as possible.
|
169 |
+
Answer with the new sentence only.''',
|
170 |
+
long_element)
|
171 |
+
output = output + '"' + long_element + '" should be refactored to "' + refactored_element + '"\n'
|
172 |
+
#long_elements = "\n".join(long_elements)
|
173 |
+
return "Lengthy elements:\n" + output
|
174 |
else:
|
175 |
+
return ""
|
176 |
# #####################################
|
177 |
|
178 |
# ######### Complex Sentences #########
|
|
|
189 |
|
190 |
def get_complex_sentences(elements):
|
191 |
|
192 |
+
complex_sentences = []
|
193 |
+
|
194 |
for key, value in elements.items():
|
195 |
for i in range(0, len(elements[key])):
|
196 |
if is_complex_sentence(elements[key][i]):
|
197 |
complex_sentences.append(elements[key][i])
|
198 |
+
|
199 |
if complex_sentences:
|
200 |
+
output = ""
|
201 |
+
for complex_sentence in complex_sentences:
|
202 |
+
refactored_element = prompt(
|
203 |
+
'''
|
204 |
+
You are a specialist in English linguistics.
|
205 |
+
A complex sentence is a sentence with one independent clause and at least one dependent clause. A simple sentence has a single independent clause.
|
206 |
+
You will be provided with a complex sentence, and your task is to make it a simple sentence.
|
207 |
+
Do not convert a verb phrase to a noun phrase, and vice versa.
|
208 |
+
Answer with the new sentence only.
|
209 |
+
''', complex_sentence)
|
210 |
+
output = output + '"' + complex_sentence + '" should be refactored to "' + refactored_element + '"\n'
|
211 |
+
#complex_sentences = "\n".join(complex_sentences)
|
212 |
+
return "Complex elements:\n" + output
|
213 |
else:
|
214 |
+
return ""
|
215 |
|
216 |
# #####################################
|
217 |
|
|
|
221 |
punctuations = []
|
222 |
|
223 |
for key, value in elements.items():
|
224 |
+
for i in range(0, len(elements[key])):
|
225 |
+
if len(re.findall("[^\s\w\d-]", elements[key][i])) > 0:
|
226 |
+
punctuations.append(elements[key][i])
|
227 |
|
228 |
if punctuations:
|
229 |
+
output = ""
|
230 |
+
for punctuation in punctuations:
|
231 |
+
refactored_element = prompt(
|
232 |
+
'''
|
233 |
+
You are a specialist in English linguistics.
|
234 |
+
You will be provided with a sentence, and your task is to remove all punctuation marks.
|
235 |
+
Answer with the new sentence only.''', punctuation)
|
236 |
+
output = output + '"' + punctuation + '" should be refactored to "' + refactored_element + '"\n'
|
237 |
+
#punctuations = "\n".join(punctuations)
|
238 |
+
return "Punctuation-marked elements:\n" + output
|
239 |
else:
|
240 |
+
return ""
|
241 |
# #################################
|
242 |
|
243 |
# ########## Incorrect Actor Syntax ##########
|
244 |
+
def check_verb_or_noun_phrase(sentence):
|
245 |
+
|
246 |
+
result = prompt(
|
247 |
+
'''
|
248 |
+
You are a specialist in English linguistics.
|
249 |
+
You will be provided with a sentence, and your task is to determine whether the sentence is a noun phrase or a verb phrase.
|
250 |
+
Answer with "noun phrase" or "verb phrase" and your reasons.
|
251 |
+
Use JSON format with keys "answer" and "reason".''', sentence)
|
252 |
+
result = json.loads(result)
|
253 |
+
return result["answer"]
|
254 |
+
|
255 |
+
# def find_non_NPs(sentences):
|
256 |
|
257 |
+
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
|
258 |
|
259 |
+
# outputs = pipeline(sentences)
|
260 |
|
261 |
+
# Non_NPs = []
|
262 |
|
263 |
+
# for idx, output in enumerate(outputs):
|
264 |
+
# if output[0]['entity'].startswith('V'):
|
265 |
+
# Non_NPs.append(sentences[idx])
|
266 |
|
267 |
+
# return Non_NPs
|
268 |
|
269 |
def check_actor_syntax(actors):
|
270 |
|
271 |
+
incorrect_actors_syntax = []
|
272 |
+
for actor in actors:
|
273 |
+
result = check_verb_or_noun_phrase(actor)
|
274 |
+
if result == "verb phrase":
|
275 |
+
incorrect_actors_syntax.append(actor)
|
276 |
+
|
277 |
+
|
278 |
+
if incorrect_actors_syntax:
|
279 |
+
output = ""
|
280 |
+
for incorrect_actor_syntax in incorrect_actors_syntax:
|
281 |
+
refactored_element = prompt(
|
282 |
+
'''
|
283 |
+
You are a specialist in English linguistics.
|
284 |
+
You will be provided with a sentence that is a verb phrase, and your task is to make it a noun pharse representing an actor.
|
285 |
+
A noun phrase should start with a noun.
|
286 |
+
Example of actors: System, PC User, and Privacy Officer.
|
287 |
+
Answer with the new sentence only.''', incorrect_actor_syntax)
|
288 |
+
output = output + '"' + incorrect_actor_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
289 |
+
#incorrect_actor_syntax = "\n".join(incorrect_actor_syntax)
|
290 |
+
return "Incorrect actors syntax:\n" + output
|
291 |
else:
|
292 |
+
return ""
|
293 |
# ############################################
|
294 |
|
295 |
# ########## Incorrect Goal Syntax ###########
|
296 |
def check_goal_syntax(goals):
|
297 |
|
298 |
+
incorrect_goals_syntax = []
|
299 |
+
for goal in goals:
|
300 |
+
result = check_verb_or_noun_phrase(goal)
|
301 |
+
if result == "verb phrase":
|
302 |
+
incorrect_goals_syntax.append(goal)
|
303 |
+
|
304 |
+
if incorrect_goals_syntax:
|
305 |
+
output = ""
|
306 |
+
for incorrect_goal_syntax in incorrect_goals_syntax:
|
307 |
+
refactored_element = prompt(
|
308 |
+
'''
|
309 |
+
You are a specialist in English linguistics.
|
310 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
|
311 |
+
A noun phrase should start with a noun.
|
312 |
+
For example: high data quality, fast response time, and course registration.
|
313 |
+
Answer with the new sentence only.''', incorrect_goal_syntax)
|
314 |
+
output = output + '"' + incorrect_goal_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
315 |
+
#incorrect_goal_syntax = "\n".join(incorrect_goal_syntax)
|
316 |
+
return "Incorrect goals syntax:\n" + output
|
317 |
else:
|
318 |
+
return ""
|
319 |
# ############################################
|
320 |
|
321 |
# ########## Incorrect Softgoal Syntax ###########
|
322 |
def check_softgoal_syntax(softgoals):
|
323 |
|
324 |
+
incorrect_softgoals_syntax = []
|
325 |
+
for softgoal in softgoals:
|
326 |
+
result = check_verb_or_noun_phrase(softgoal)
|
327 |
+
if result == "verb phrase":
|
328 |
+
incorrect_softgoals_syntax.append(softgoal)
|
329 |
+
|
330 |
+
if incorrect_softgoals_syntax:
|
331 |
+
|
332 |
+
output = ""
|
333 |
+
for incorrect_softgoal_syntax in incorrect_softgoals_syntax:
|
334 |
+
refactored_element = prompt(
|
335 |
+
'''
|
336 |
+
You are a specialist in English linguistics.
|
337 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
|
338 |
+
A noun phrase should start with a noun.
|
339 |
+
For example: high data quality, fast response time, and course registration.
|
340 |
+
Answer with the new sentence only.''', incorrect_softgoal_syntax)
|
341 |
+
output = output + '"' + incorrect_softgoal_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
342 |
+
#incorrect_softgoal_syntax = "\n".join(incorrect_softgoal_syntax)
|
343 |
+
return "Incorrect softgoals syntax:\n" + output
|
344 |
else:
|
345 |
+
return ""
|
346 |
# ############################################
|
347 |
|
348 |
# ########## Incorrect Task Syntax ###########
|
349 |
+
# def find_NPs(sentences):
|
350 |
|
351 |
+
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
|
352 |
|
353 |
+
# outputs = pipeline(sentences)
|
354 |
|
355 |
+
# NPs = []
|
356 |
|
357 |
+
# for idx, output in enumerate(outputs):
|
358 |
+
# if not output[0]['entity'].startswith('V'):
|
359 |
+
# NPs.append(sentences[idx])
|
360 |
|
361 |
+
# return NPs
|
362 |
|
363 |
def check_task_syntax(tasks):
|
364 |
|
365 |
+
incorrect_tasks_syntax = []
|
366 |
+
for task in tasks:
|
367 |
+
result = check_verb_or_noun_phrase(task)
|
368 |
+
if result == "noun phrase":
|
369 |
+
incorrect_tasks_syntax.append(task)
|
370 |
+
|
371 |
+
|
372 |
+
if incorrect_tasks_syntax:
|
373 |
+
output = ""
|
374 |
+
for incorrect_task_syntax in incorrect_tasks_syntax:
|
375 |
+
refactored_element = prompt(
|
376 |
+
'''
|
377 |
+
You are a specialist in English linguistics.
|
378 |
+
You will be provided with a sentence that is not a verb phrase, and your task is to make it a verb pharse representing a task.
|
379 |
+
A verb phrase should start with a verb.
|
380 |
+
For example: provide maintenance services, help co-workers, and enhance quality.
|
381 |
+
Answer with the new sentence only.''', incorrect_task_syntax)
|
382 |
+
output = output + '"' + incorrect_task_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
383 |
+
#incorrect_task_syntax = "\n".join(incorrect_task_syntax)
|
384 |
+
return "Incorrect tasks syntax:\n" + output
|
385 |
else:
|
386 |
+
return ""
|
387 |
# ############################################
|
388 |
|
389 |
# ########## Incorrect Resource Syntax ###########
|
390 |
def check_resource_syntax(resources):
|
391 |
|
392 |
+
if len(resources) == 0:
|
393 |
+
return ""
|
394 |
+
|
395 |
+
#incorrect_resources_syntax = find_non_NPs(resources)
|
396 |
+
incorrect_resources_syntax = []
|
397 |
+
for resource in resources:
|
398 |
+
result = check_verb_or_noun_phrase(resource)
|
399 |
+
if result == "verb phrase":
|
400 |
+
incorrect_resources_syntax.append(resource)
|
401 |
+
|
402 |
+
if incorrect_resources_syntax:
|
403 |
+
output = ""
|
404 |
+
for incorrect_resource_syntax in incorrect_resources_syntax:
|
405 |
+
refactored_element = prompt(
|
406 |
+
'''
|
407 |
+
You are a specialist in English linguistics.
|
408 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a resource.
|
409 |
+
A noun phrase should start with a noun.
|
410 |
+
For example: internet, database, and files system.
|
411 |
+
Answer with the new sentence only.''', incorrect_resource_syntax)
|
412 |
+
output = output + '"' + incorrect_resource_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
413 |
+
|
414 |
+
#incorrect_resource_syntax = "\n".join(incorrect_resource_syntax)
|
415 |
+
return "Incorrect resources syntax:\n" + output
|
416 |
else:
|
417 |
+
return ""
|
418 |
# ############################################
|
419 |
|
420 |
# ########## Similarity ###########
|
|
|
428 |
for i in range(len(elements_per_actor[key])):
|
429 |
for j in range(i+1,len(elements_per_actor[key])):
|
430 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
431 |
+
|
432 |
+
# Predict semantic similarity
|
433 |
semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)
|
434 |
|
435 |
similar_elements = []
|
436 |
+
|
437 |
for index, value in enumerate(sentence_pairs):
|
438 |
if semantic_similarity_scores[index] > similarity_threshold:
|
439 |
similar_elements.append(value)
|
440 |
+
#similar_elements.append('"'+value+'"')
|
441 |
#semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]
|
442 |
|
443 |
if similar_elements:
|
444 |
+
result_string = ""
|
445 |
+
for sublist in similar_elements:
|
446 |
+
result_string += ' and '.join(f'"{item}"' for item in sublist) + '\n'
|
447 |
+
|
448 |
+
#similar_elements = [' and '.join('"' + ele + '"') for ele in similar_elements]
|
449 |
+
#similar_elements = "\n".join(similar_elements)
|
450 |
+
return "Similar elements:\n" + result_string
|
451 |
else:
|
452 |
+
return ""
|
453 |
|
454 |
return semantic_similarity
|
455 |
# #################################
|
456 |
|
457 |
# ########## Misspelling ###########
|
458 |
+
# def get_misspelled_words(sentence):
|
459 |
|
460 |
+
# spell = Speller(only_replacements=True)
|
461 |
|
462 |
+
# misspelled= []
|
463 |
|
464 |
+
# for word in sentence.split():
|
465 |
+
# correct_word = spell(word)
|
466 |
+
# if word != correct_word:
|
467 |
+
# misspelled.append([word, correct_word])
|
468 |
|
469 |
+
# return misspelled
|
470 |
|
471 |
def check_spelling(elements):
|
472 |
|
473 |
+
refactored_elements = []
|
|
|
474 |
|
475 |
for key, value in elements.items():
|
476 |
+
for i in range(0, len(elements[key])):
|
477 |
+
refactored_element = prompt(
|
478 |
+
'''
|
479 |
+
You are a specialist in English linguistics.
|
480 |
+
You will be provided with a sentence and your task is to report any misspilled words and correct the spilling if needed.
|
481 |
+
Answer with "correct" or "misspilled". In case the sentence is misspilled, correct it with the right spelling.
|
482 |
+
Use a JSON format with keys 'original sentence', 'answer', and 'correct sentence'.
|
483 |
+
For example: {'original sentence': 'incraese value', 'answer': 'misspilled', 'correct sentence': 'increase value'}''', elements[key][i])
|
484 |
+
|
485 |
+
refactored_element = refactored_element.replace("'", '"')
|
486 |
+
refactored_element = json.loads(refactored_element)
|
487 |
+
|
488 |
+
if refactored_element['answer'] == 'misspilled':
|
489 |
+
refactored_elements.append('"' + refactored_element["original sentence"] + '" should be written as "' + refactored_element["correct sentence"] + '"')
|
490 |
+
|
491 |
|
492 |
+
if refactored_elements:
|
493 |
+
refactored_elements = "\n".join(refactored_elements)
|
494 |
+
return "Misspilled elements:\n" + refactored_elements
|
495 |
+
else:
|
496 |
+
return ""
|
497 |
# ##################################
|
498 |
|
499 |
# ########## NLI ###########
|
|
|
570 |
return result
|
571 |
|
572 |
# Contradiction
|
573 |
+
def check_for_linguistic_conflict(pairs):
|
574 |
+
|
575 |
+
pairs = ",".join(str(element) for element in pairs)
|
576 |
+
|
577 |
+
contradicting_pairs = []
|
578 |
+
result = prompt(
|
579 |
+
'''
|
580 |
+
You are a specialist in English linguistics.
|
581 |
+
You will be provided with a list of sentencses pair, and your task is to determine whether each pair can be conflicting or not.
|
582 |
+
For example: "Inrease quality of service" AND "Cut expenses" are conflicting because increasing quality usually requires spending money.
|
583 |
+
For each pair, answer with "yes" or "no" with your reason in short.
|
584 |
+
Use a list of dictionaries format with keys "pair" and "answer". Omit "reason" from your response.''', pairs)
|
585 |
+
|
586 |
+
result = result.replace("'", '"')
|
587 |
+
|
588 |
+
results = json.loads(result)
|
589 |
+
for result in results:
|
590 |
+
if result["answer"] == "yes":
|
591 |
+
contradicting_pairs.append(result["pair"])
|
592 |
+
|
593 |
+
return contradicting_pairs
|
594 |
+
|
595 |
+
def find_paths_between_elements(elements, start_element, end_element, visited, path=[]):
|
596 |
+
|
597 |
+
visited[start_element] = True
|
598 |
+
path.append(start_element)
|
599 |
|
600 |
+
if start_element == end_element:
|
601 |
+
yield list(path)
|
602 |
+
else:
|
603 |
+
for contrib in elements:
|
604 |
+
if contrib[1] in visited: ## added
|
605 |
+
if contrib[0] == start_element and not visited[contrib[1]]:
|
606 |
+
yield from find_paths_between_elements(elements, contrib[1], end_element, visited, path)
|
607 |
+
|
608 |
+
path.pop()
|
609 |
+
visited[start_element] = False
|
610 |
+
|
611 |
+
def check_contradiction(elements_per_actor, contributing_elements):
|
612 |
+
|
613 |
+
pairs_to_check_1 = []
|
614 |
+
pairs_to_check_2 = []
|
615 |
+
pairs_to_check_3 = []
|
616 |
+
|
617 |
+
all_values_contributing_elements = []
|
618 |
+
for values_list in contributing_elements.values():
|
619 |
+
all_values_contributing_elements.extend(values_list)
|
620 |
+
|
621 |
+
|
622 |
+
sentence_pairs = []
|
623 |
contradicting_elements = []
|
624 |
|
625 |
+
# case 1: contradicting elements contributing similarly to other elements
|
626 |
for key, value in elements_per_actor.items():
|
627 |
|
628 |
for i in range(len(elements_per_actor[key])):
|
629 |
for j in range(i+1,len(elements_per_actor[key])):
|
630 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
631 |
+
|
|
|
|
|
632 |
for sentence_pair in sentence_pairs:
|
633 |
+
contribution_scores = []
|
634 |
+
|
635 |
+
for contributing_element in all_values_contributing_elements:
|
636 |
+
|
637 |
+
if contributing_element[0] == sentence_pair[0] or contributing_element[0] == sentence_pair[1]:
|
638 |
+
|
639 |
+
if contributing_element[2] == "make":
|
640 |
+
contribution_score = 75
|
641 |
+
elif contributing_element[2] == "help":
|
642 |
+
contribution_score = 50
|
643 |
+
elif contributing_element[2] == "somePositive":
|
644 |
+
contribution_score = 25
|
645 |
+
elif contributing_element[2] == "unknown":
|
646 |
+
contribution_score = 0
|
647 |
+
elif contributing_element[2] == "someNegative":
|
648 |
+
contribution_score = -25
|
649 |
+
elif contributing_element[2] == "break":
|
650 |
+
contribution_score = -50
|
651 |
+
elif contributing_element[2] == "hurt":
|
652 |
+
contribution_score = -75
|
653 |
+
else:
|
654 |
+
contribution_score = int(contributing_element[2])
|
655 |
+
|
656 |
+
contribution_scores.append((contributing_element[0], contribution_score))
|
657 |
+
|
658 |
+
if len(contribution_scores) < 2:
|
659 |
+
pairs_to_check_1.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
660 |
+
else:
|
661 |
+
flag = 0
|
662 |
+
for pair in itertools.combinations(contribution_scores, r=2):
|
663 |
+
if pair[0][0] != pair[1][0]:
|
664 |
+
if pair[0][1] * pair[1][1] < 0:
|
665 |
+
flag = 1
|
666 |
+
|
667 |
+
if flag == 0:
|
668 |
+
pairs_to_check_2.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
669 |
+
|
670 |
+
# case 2: contradicting elements contributing similarly to each other, taking into considration the full path between the two elements
|
671 |
+
for key, value in elements_per_actor.items():
|
672 |
+
for element1 in value:
|
673 |
+
for element2 in value:
|
674 |
+
if element1 != element2:
|
675 |
+
visited = {e: False for e in value}
|
676 |
+
|
677 |
+
for path in find_paths_between_elements(all_values_contributing_elements, element1, element2, visited):
|
678 |
+
|
679 |
+
first_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[0] and contrib[1] == path[1]), None)
|
680 |
+
last_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[-2] and contrib[1] == path[-1]), None)
|
681 |
+
|
682 |
+
if first_edge_value is not None and last_edge_value is not None and int(first_edge_value) * int(last_edge_value) > 0:
|
683 |
+
pairs_to_check_3.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
684 |
+
|
685 |
+
pairs_to_check = pairs_to_check_1 + pairs_to_check_2 + pairs_to_check_3
|
686 |
+
|
687 |
+
# Initialize an empty list to store the divided lists
|
688 |
+
divided_lists = []
|
689 |
+
|
690 |
+
# Iterate over the long list and create sublists of 30 items each
|
691 |
+
for i in range(0, len(pairs_to_check), 30):
|
692 |
+
sublist = pairs_to_check[i:i + 30]
|
693 |
+
divided_lists.append(sublist)
|
694 |
+
|
695 |
+
for divided_list in divided_lists:
|
696 |
+
contradicting_elements = contradicting_elements + check_for_linguistic_conflict(divided_list)
|
697 |
|
698 |
if contradicting_elements:
|
699 |
+
# Using a set to store unique sublists
|
700 |
+
contradicting_elements = set(tuple(sublist) for sublist in contradicting_elements)
|
701 |
+
# Converting back to a list of lists
|
702 |
+
contradicting_elements = [list(sublist) for sublist in contradicting_elements]
|
703 |
+
|
704 |
contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
|
705 |
contradicting_elements = "\n".join(contradicting_elements)
|
706 |
+
|
707 |
+
return "Conflicting elements:\n" + contradicting_elements
|
708 |
else:
|
709 |
+
return ""
|
710 |
# ##########################
|
711 |
|
712 |
# ************************* User Interface *************************
|
713 |
|
714 |
+
def detect_bad_smells(tgrl_file, selected_bad_smells, size_threshold, similarity_threshold):
|
715 |
|
716 |
output = ""
|
717 |
|
718 |
tgrl_text = parse_tgrl(tgrl_file)
|
719 |
|
720 |
+
all_elements, elements_per_actor, decomposed_elements, contributing_elements = extract_elements(tgrl_text)
|
721 |
+
|
722 |
+
if 'Lengthy element' in selected_bad_smells:
|
723 |
+
print(output)
|
724 |
+
result = get_long_elements(all_elements, size_threshold)
|
725 |
+
if result != "":
|
726 |
+
output = output + result + "\n\n"
|
727 |
+
|
728 |
+
if 'Complex element' in selected_bad_smells:
|
729 |
+
result = get_complex_sentences(all_elements)
|
730 |
+
if result != "":
|
731 |
+
output = output + result + "\n\n"
|
732 |
+
|
733 |
+
if 'Punctuation-marked element' in selected_bad_smells:
|
734 |
+
result = get_punctuations(all_elements)
|
735 |
+
if result != "":
|
736 |
+
output = output + result + "\n\n"
|
737 |
+
|
738 |
+
if 'Incorrect actor syntax' in selected_bad_smells:
|
739 |
+
result = check_actor_syntax(all_elements['actors'])
|
740 |
+
if result != "":
|
741 |
+
output = output + result + "\n\n"
|
742 |
+
|
743 |
+
if 'Incorrect goal syntax' in selected_bad_smells:
|
744 |
+
result = check_goal_syntax(all_elements['goals'])
|
745 |
+
if result != "":
|
746 |
+
output = output + result + "\n\n"
|
747 |
+
|
748 |
+
if 'Incorrect softgoal syntax' in selected_bad_smells:
|
749 |
+
result = check_softgoal_syntax(all_elements['softGoals'])
|
750 |
+
if result != "":
|
751 |
+
output = output + result + "\n\n"
|
752 |
+
|
753 |
+
if 'Incorrect task syntax' in selected_bad_smells:
|
754 |
+
result = check_task_syntax(all_elements['tasks'])
|
755 |
+
if result != "":
|
756 |
+
output = output + result + "\n\n"
|
757 |
+
|
758 |
+
if 'Incorrect resource syntax' in selected_bad_smells:
|
759 |
+
result = check_resource_syntax(all_elements['resources'])
|
760 |
+
if result != "":
|
761 |
+
output = output + result + "\n\n"
|
762 |
+
|
763 |
+
if 'Similar elements' in selected_bad_smells:
|
764 |
+
result = get_similar_elements(elements_per_actor, similarity_threshold)
|
765 |
+
if result != "":
|
766 |
+
output = output + result + "\n\n"
|
767 |
+
|
768 |
+
if 'Misspelled element' in selected_bad_smells:
|
769 |
+
result = check_spelling(all_elements)
|
770 |
+
if result != "":
|
771 |
+
output = output + result + "\n\n"
|
772 |
+
|
773 |
+
if 'Goal/Task and Sub-goal/Sub-task mismatch' in selected_bad_smells:
|
774 |
+
result = check_entailment(decomposed_elements)
|
775 |
+
if result != "":
|
776 |
+
output = output + result + "\n\n"
|
777 |
+
|
778 |
+
if 'Conflicting elements' in selected_bad_smells:
|
779 |
+
result = check_contradiction(elements_per_actor, contributing_elements)
|
780 |
+
if result != "":
|
781 |
+
output = output + result + "\n\n"
|
782 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
783 |
return output
|
784 |
|
785 |
|
786 |
+
interface = gr.Interface(fn = detect_bad_smells,
|
787 |
inputs = [gr.File(label="TGRL File"),
|
788 |
+
gr.CheckboxGroup(["Lengthy element", "Complex element", "Punctuation-marked element", "Incorrect actor syntax", "Incorrect goal syntax", "Incorrect softgoal syntax", "Incorrect task syntax", "Incorrect resource syntax", "Similar elements", "Misspelled element", "Goal/Task and Sub-goal/Sub-task mismatch", "Conflicting elements"],
|
789 |
+
label="Which bad smells you want to detect and refactor?"),
|
790 |
+
gr.Slider(label= "Length threshold", value = 5, minimum = 2, maximum = 10, step = 1),
|
791 |
gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
|
792 |
+
outputs = [gr.Textbox(label= "Detected and refactored bad smells:")],
|
793 |
+
title = "TGRL Bad Smells Detection and Refactoring",
|
794 |
+
description = "Upload your .xgrl file and we will find the bad smells and refactor them for you!",
|
795 |
theme = gr.themes.Soft())
|
796 |
|
797 |
|