Spaces:
Sleeping
Sleeping
File size: 12,676 Bytes
5e86b1e 62f5458 5e86b1e 3e4b171 5e86b1e 704f4b9 5e86b1e 5c280cb 704f4b9 5c280cb 5e86b1e 7709462 5e86b1e 811f8f6 5e86b1e 4b115b9 5e86b1e 2cd4b76 5e86b1e 48d8e67 5e86b1e 7effb49 cda9751 5e86b1e 5c280cb 5e86b1e 7709462 5e86b1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import pandas as pd
import whisper
from pydantic import BaseModel, Field
from langchain_experimental.utilities import PythonREPL
import cv2
from pathlib import Path
from yt_dlp import YoutubeDL
from ultralytics import YOLO, settings
from typing import List, Dict
from typing import TypedDict, Annotated
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain.tools import Tool, tool
from utils import GaiaClient
@tool
def download_file(task_id: str, filename: str) -> str:
"""
Download the file for the given task id.
Args:
task_id: The id of the task to download a related file.
filename: Path to store the file to.
"""
DOWNLOAD_PATH = Path("questions")
DOWNLOAD_PATH.mkdir(exist_ok=True)
client = GaiaClient(DOWNLOAD_PATH, None, None, api_url="https://agents-course-unit4-scoring.hf.space")
result = client.download_file_for_task(task_id, filename)
return (
f"File downloaded at {result}. You can read this file to process its contents."
)
@tool
def multiply(a: float, b: float) -> float:
"""Multiplies two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Adds two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a + b
@tool
def subtract(a: float, b: float) -> int:
"""Subtracts two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divides two numbers.
Args:
a (float): the first float number
b (float): the second float number
"""
if b == 0:
raise ValueError("Cannot divided by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a (int): the first number
b (int): the second number
"""
return a % b
@tool
def power(a: float, b: float) -> float:
"""Get the power of two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a**b
@tool
def excel_reader(path: str):
"""
Reads the specified Excel file into a pandas DataFrame,
converts it to CSV-style text, and asks the LLM to answer the question
based on that data.
Args:
path: path indicating the excel file
"""
print("reading_excel_file")
df = pd.read_excel(path)
data_context = df.to_csv(df)
return data_context
@tool
def get_web_search_result(query: str) -> str:
"""Fetches information from the internet (web) based on given query.
Args:
query: The search query.
Returns:
The search results.
"""
print("get_web_search_result")
tavily_search = TavilySearchResults(max_results=3)
search_docs = tavily_search.invoke(query)
return{"web_search_results": search_docs}
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 5 results. Use this tool only if the query specifies Wiki or Wikipedia.
Args:
query: The search query.
Returns:
An array documents.
"""
print("wiki_search")
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query.
Returns:
An array of documents.
"""
print("arxiv_search")
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arxiv_results": formatted_search_docs}
@tool
def reverse_text(prompt: str) -> str:
"""
Returns the reversed version of a given reversed text so that the text makes sense.
Args:
prompt: The prompt which contains word and sentence in a reverse order.
Returns:
A reversed version of the reversed sentence which is human readable and understandable.
"""
print("restoring_text")
return prompt[::-1]
@tool
def transcribe_audio(file_path: str):
"""
Transcribes an audio file to text using local Whisper model.
Then uses the transcription to answer question from the given prompt.
Args:
file_path: Path to the audio file
Returns:
A dictionary containing the transcription and metadata
"""
try:
print(f"Transcribing audio file: {file_path}")
# Validate file exists
if not os.path.exists(file_path):
return {
"status": "error",
"message": f"File not found: {file_path}"
}
# Load a Whisper model - we'll use the small model for better performance
# Options include: tiny, base, small, medium, large
model = whisper.load_model("small")
# Transcribe the audio
result = model.transcribe(file_path)
print({
"status": "success",
"transcription": result["text"],
"language": result.get("language", "unknown"),
"file_path": file_path
})
# Return the transcription and metadata
return {
"status": "success",
"transcription": result["text"],
"language": result.get("language", "unknown"),
"file_path": file_path
}
except Exception as e:
print({
"status": "error",
"message": f"Error transcribing audio: {str(e)}"
})
return {
"status": "error",
"message": f"Error transcribing audio: {str(e)}"
}
class PythonREPLInput(BaseModel):
code: str = Field(description="The Python code string to execute.")
python_repl = PythonREPL()
python_repl_tool = Tool(
name="python_repl",
description="""A Python REPL shell (Read-Eval-Print Loop).
Use this to execute single or multi-line python commands.
Input should be syntactically valid Python code.
Always end your code with `print(...)` to see the output.
Do NOT execute code that could be harmful to the host system.
You are allowed to download files from URLs.
Do not use this tool as a web search.
Do NOT send commands that block indefinitely (e.g., `input()`).""",
func=python_repl.run,
args_schema=PythonREPLInput
)
class YouTubeFrameExtractor:
def __init__(self, model_path: str = 'yolov8n.pt', frame_rate: int = 1):
# Load YOLOv8 model
YOLO_PATH_CONFIG = Path("yolo")
YOLO_PATH_CONFIG.mkdir(exist_ok=True)
settings.update({"runs_dir": str(YOLO_PATH_CONFIG)})
self.model = YOLO(model_path)
self.frame_rate = frame_rate # frames per second to sample
def download_video(self, url: str) -> str:
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4',
'outtmpl': '%(id)s.%(ext)s',
}
with YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return ydl.prepare_filename(info)
def extract_counts_per_frame(self, url: str) -> List[Dict[str, int]]:
video_path = self.download_video(url)
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
sample_interval = max(1, int(round(fps / self.frame_rate)))
frame_counts: List[Dict[str, int]] = []
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_idx % sample_interval == 0:
counts: Dict[str, int] = {}
results = self.model(frame)
for det in results:
for *box, conf, cls in det.boxes.data.tolist():
name = self.model.names[int(cls)]
counts[name] = counts.get(name, 0) + 1
frame_counts.append(counts)
frame_idx += 1
cap.release()
os.remove(video_path)
return frame_counts
def max_object_counter_tool() -> Tool:
extractor = YouTubeFrameExtractor()
def _max_object(input_str: str) -> str:
# Expect input: '<video_url> <object_name>'
parts = input_str.strip().split()
if len(parts) < 2:
return "Usage: <YouTube_URL> <object_name>"
url, obj_name = parts[0], parts[1]
frames = extractor.extract_counts_per_frame(url)
if not frames:
return "No frames processed or unable to download video."
# Compute max occurrences across frames
max_count = max(frame.get(obj_name, 0) for frame in frames)
return f"Maximum count of '{obj_name}' in any sampled frame: {max_count}"
return Tool(
name="youtube_max_object_counter",
func=_max_object,
description=(
"Downloads a YouTube video, samples frames at a given rate, runs YOLO detection, "
"and returns the maximum count of the specified object across all sampled frames."
)
)
class YouTubeTranscriber:
def __init__(self, model_size: str = "small"):
# Load Whisper model (tiny/base/small/medium/large/turbo)
self.model = whisper.load_model(model_size)
def download_audio(self, url: str) -> str:
"""
Download only the audio from a YouTube URL and return the local filename.
"""
ydl_opts = {
"format": "bestaudio/best", # best available audio :contentReference[oaicite:3]{index=3}
"postprocessors": [{
"key": "FFmpegExtractAudio", # extract with FFmpeg :contentReference[oaicite:4]{index=4}
"preferredcodec": "mp3",
"preferredquality": "192",
}],
"outtmpl": "%(id)s.%(ext)s", # name file as "<video_id>.mp3"
"quiet": True,
}
with YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def transcribe(self, audio_path: str, language: str = "en") -> str:
"""
Run Whisper on the given audio file and return the transcript.
"""
result = self.model.transcribe(
audio_path,
language=language,
without_timestamps=True
)
# os.remove(audio_path)
return result["text"]
def transcription_generation_tool() -> Tool:
"""
Returns a LangChain Tool that takes a YouTube URL and optional language code,
then returns the transcription text.
"""
transcriber = YouTubeTranscriber(model_size="small")
def _transcribe_tool(input_str: str) -> str:
# Expect: "<YouTube_URL> [language_code] "Question Text""
parts = input_str.strip().split()
url = parts[0]
lang = parts[1] if len(parts) > 2 and not input_str.split('"')[1] else "en"
# Extract question between quotes
question = input_str.split('"')[1]
try:
audio_file = transcriber.download_audio(url)
transcript = transcriber.transcribe(audio_file, language=lang)
os.remove(audio_file)
return transcript
except Exception as e:
return f"Error: {e}"
return Tool(
name="youtube_transcriber",
func=_transcribe_tool,
description=(
"Downloads audio from YouTube, transcribes it, and answers a question based on the transcript. "
"Usage: <YouTube_URL> [language_code] \"Question text\""
)
)
toolset = [
download_file,
get_web_search_result,
wiki_search,
arxiv_search,
reverse_text,
transcribe_audio,
python_repl_tool,
multiply,
add,
subtract,
divide,
modulus,
power,
excel_reader,
max_object_counter_tool(),
transcription_generation_tool()
] |