Spaces:
Runtime error
Runtime error
Delete demo.py
#4
by
mygyasir
- opened
demo.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
2 |
-
import torch
|
3 |
-
import copy
|
4 |
-
|
5 |
-
import time
|
6 |
-
|
7 |
-
ORIGINAL_CHECKPOINT_ID = "CompVis/stable-diffusion-v1-4"
|
8 |
-
COMPRESSED_UNET_ID = "nota-ai/bk-sdm-small"
|
9 |
-
|
10 |
-
DEVICE='cuda'
|
11 |
-
# DEVICE='cpu'
|
12 |
-
|
13 |
-
class SdmCompressionDemo:
|
14 |
-
def __init__(self, device) -> None:
|
15 |
-
self.device = device
|
16 |
-
self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32
|
17 |
-
|
18 |
-
self.pipe_original = StableDiffusionPipeline.from_pretrained(ORIGINAL_CHECKPOINT_ID,
|
19 |
-
torch_dtype=self.torch_dtype)
|
20 |
-
self.pipe_compressed = copy.deepcopy(self.pipe_original)
|
21 |
-
self.pipe_compressed.unet = UNet2DConditionModel.from_pretrained(COMPRESSED_UNET_ID,
|
22 |
-
subfolder="unet",
|
23 |
-
torch_dtype=self.torch_dtype)
|
24 |
-
if 'cuda' in self.device:
|
25 |
-
self.pipe_original = self.pipe_original.to(self.device)
|
26 |
-
self.pipe_compressed = self.pipe_compressed.to(self.device)
|
27 |
-
self.device_msg = 'Tested on GPU.' if 'cuda' in self.device else 'Tested on CPU.'
|
28 |
-
|
29 |
-
def _count_params(self, model):
|
30 |
-
return sum(p.numel() for p in model.parameters())
|
31 |
-
|
32 |
-
def get_sdm_params(self, pipe):
|
33 |
-
params_unet = self._count_params(pipe.unet)
|
34 |
-
params_text_enc = self._count_params(pipe.text_encoder)
|
35 |
-
params_image_dec = self._count_params(pipe.vae.decoder)
|
36 |
-
params_total = params_unet + params_text_enc + params_image_dec
|
37 |
-
return f"Total {(params_total/1e6):.1f}M (U-Net {(params_unet/1e6):.1f}M)"
|
38 |
-
|
39 |
-
|
40 |
-
def generate_image(self, pipe, text, negative, guidance_scale, steps, seed):
|
41 |
-
generator = torch.Generator(self.device).manual_seed(seed)
|
42 |
-
start = time.time()
|
43 |
-
result = pipe(text, negative_prompt = negative, generator = generator,
|
44 |
-
guidance_scale = guidance_scale, num_inference_steps = steps)
|
45 |
-
test_time = time.time() - start
|
46 |
-
|
47 |
-
image = result.images[0]
|
48 |
-
nsfw_detected = result.nsfw_content_detected[0]
|
49 |
-
print(f"text {text} | Processed time: {test_time} sec | nsfw_flag {nsfw_detected}")
|
50 |
-
print(f"negative {negative} | guidance_scale {guidance_scale} | steps {steps} ")
|
51 |
-
print("===========")
|
52 |
-
|
53 |
-
return image, nsfw_detected, format(test_time, ".2f")
|
54 |
-
|
55 |
-
def error_msg(self, nsfw_detected):
|
56 |
-
if nsfw_detected:
|
57 |
-
return self.device_msg+" Black images are returned when potential harmful content is detected. Try different prompts or seeds."
|
58 |
-
else:
|
59 |
-
return self.device_msg
|
60 |
-
|
61 |
-
def check_invalid_input(self, text):
|
62 |
-
if text == '':
|
63 |
-
return True
|
64 |
-
|
65 |
-
def infer_original_model(self, text, negative, guidance_scale, steps, seed):
|
66 |
-
print(f"=== ORIG model --- seed {seed}")
|
67 |
-
if self.check_invalid_input(text):
|
68 |
-
return None, "Please enter the input prompt.", None
|
69 |
-
output_image, nsfw_detected, test_time = self.generate_image(self.pipe_original,
|
70 |
-
text, negative, guidance_scale, steps, seed)
|
71 |
-
|
72 |
-
return output_image, self.error_msg(nsfw_detected), test_time
|
73 |
-
|
74 |
-
def infer_compressed_model(self, text, negative, guidance_scale, steps, seed):
|
75 |
-
print(f"=== COMPRESSED model --- seed {seed}")
|
76 |
-
if self.check_invalid_input(text):
|
77 |
-
return None, "Please enter the input prompt.", None
|
78 |
-
output_image, nsfw_detected, test_time = self.generate_image(self.pipe_compressed,
|
79 |
-
text, negative, guidance_scale, steps, seed)
|
80 |
-
|
81 |
-
return output_image, self.error_msg(nsfw_detected), test_time
|
82 |
-
|
83 |
-
|
84 |
-
def get_example_list(self):
|
85 |
-
return [
|
86 |
-
'a tropical bird sitting on a branch of a tree',
|
87 |
-
'many decorative umbrellas hanging up',
|
88 |
-
'an orange cat staring off with pretty eyes',
|
89 |
-
'beautiful woman face with fancy makeup',
|
90 |
-
'a decorated living room with a stylish feel',
|
91 |
-
'a black vase holding a bouquet of roses',
|
92 |
-
'very elegant bedroom featuring natural wood',
|
93 |
-
'buffet-style food including cake and cheese',
|
94 |
-
'a tall castle sitting under a cloudy sky',
|
95 |
-
'closeup of a brown bear sitting in a grassy area',
|
96 |
-
'a large basket with many fresh vegetables',
|
97 |
-
'house being built with lots of wood',
|
98 |
-
'a close up of a pizza with several toppings',
|
99 |
-
'a golden vase with many different flows',
|
100 |
-
'a statue of a lion face attached to brick wall',
|
101 |
-
'something that looks particularly interesting',
|
102 |
-
'table filled with a variety of different dishes',
|
103 |
-
'a cinematic view of a large snowy peak',
|
104 |
-
'a grand city in the year 2100, hyper realistic',
|
105 |
-
'a blue eyed baby girl looking at the camera',
|
106 |
-
]
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|