File size: 15,310 Bytes
c46f708 60b9112 cd1d66e 07032c4 cd1d66e 80df9e4 cd1d66e 70e0a9c cd1d66e 30fbdbc cd1d66e 5412b85 cd1d66e 4311a33 cd1d66e c46f708 cd1d66e 4311a33 cd1d66e c46f708 cd1d66e d023690 cd1d66e c46f708 cd1d66e c46f708 cd1d66e 1327921 cd1d66e 8016fe2 cd1d66e 8016fe2 cd1d66e 752953f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# import transformers as t
# assert t.__version__=='4.25.1', "Transformers version should be as specified"
#
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
#from huggingface_hub import notebook_login
# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import io
#import base64
import torch.nn.functional as F
#from pytorch_grad_cam.utils.image import show_cam_on_image
torch.manual_seed(1)
#if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
import sys,gc,traceback
import fastcore.all as fc
# %% ../nbs/11_initializing.ipynb 11
def clean_ipython_hist():
# Code in this function mainly copied from IPython source
if not 'get_ipython' in globals(): return
ip = get_ipython()
user_ns = ip.user_ns
ip.displayhook.flush()
pc = ip.displayhook.prompt_count + 1
for n in range(1, pc): user_ns.pop('_i'+repr(n),None)
user_ns.update(dict(_i='',_ii='',_iii=''))
hm = ip.history_manager
hm.input_hist_parsed[:] = [''] * pc
hm.input_hist_raw[:] = [''] * pc
hm._i = hm._ii = hm._iii = hm._i00 = ''
# %% ../nbs/11_initializing.ipynb 12
def clean_tb():
# h/t Piotr Czapla
if hasattr(sys, 'last_traceback'):
traceback.clear_frames(sys.last_traceback)
delattr(sys, 'last_traceback')
if hasattr(sys, 'last_type'): delattr(sys, 'last_type')
if hasattr(sys, 'last_value'): delattr(sys, 'last_value')
# %% ../nbs/11_initializing.ipynb 13
def clean_mem():
clean_tb()
clean_ipython_hist()
gc.collect()
torch.cuda.empty_cache()
clean_mem()
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device);
embeds_folder = Path('./paintings_embed')
file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()]
print(file_names)
style_names = [list(torch.load(embeds_folder/file).keys())[0] for file in file_names]
style_names
num_added_tokens = tokenizer.add_tokens(style_names)
added_tokens = list(map(tokenizer.added_tokens_encoder.get,style_names))
added_tokens,style_names
text_encoder.resize_token_embeddings(len(tokenizer))
text_encoder.text_model.embeddings.token_embedding
style_dict = {}
list_styles = [torch.load(embeds_folder/file) for file in file_names]
# for k,v in list_styles[0].items():
# print(k,v.shape)
style_dict = {style:embedding for each_style in list_styles for style,embedding in each_style.items()}
list(style_dict)
for token,style in zip(added_tokens,style_names):
text_encoder.text_model.embeddings.token_embedding.weight.data[token] = style_dict[style]
# #checking if we added the embeddings properly to text_encoder
# ft_dict = torch.load(embeds_folder/'fairy-tale-painting_embeds.bin')
# list(ft_dict.keys())[0]
# ft_dict['<fairy-tale-painting-style>'][:10]
clean_mem()
# text_encoder.get_input_embeddings()(torch.tensor(49408, device=torch_device))[:10]
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
token_emb_layer # Vocab size 49408, emb_dim 768
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
print(position_embeddings.shape)
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
#Generating an image with these modified embeddings
def generate_with_embs_custom(text_embeddings,seed):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_embeddings.shape[1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
# ref_image = Image.open('C:/Users/shivs/Downloads/lg.jpg').resize((512,512))
# ref_latent = pil_to_latent(ref_image)
## Guidance through Custom Loss Function
def custom_loss(latent,ref_latent):
error = F.mse_loss(0.5*latent,0.8*ref_latent)
return error
class Styles_paintings():
def __init__(self,prompt):
self.output_styles = []
self.prompt = prompt
self.style_names = list(style_dict)
self.seeds = [1024+i for i in range(len(self.style_names))]
def generate_styles(self):
#print('The Values are ', list(style_dict)[0])
for seed,style_name in zip(self.seeds,self.style_names):
# Tokenize
prompt = f'{self.prompt} in the style of {style_name}'
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
self.output_styles.append(generate_with_embs_custom(modified_output_embeddings,seed))
def generate_styles_with_custom_loss(self, image):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 10 #@param # Number of denoising steps
guidance_scale = 8 #@param # Scale for classifier-free guidance
batch_size = 1
custom_loss_scale = 200 #@param
print('image shape there is',image.size)
self.output_styles_with_custom_loss = []
#ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512))
ref_latent = pil_to_latent(image)
for seed,style_name in zip(self.seeds,self.style_names):
# Tokenize
prompt = f'{self.prompt} in the style of {style_name}'
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
print(f' the prompt is : {prompt} with seed value :{seed}')
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
#denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = custom_loss(latents_x0,ref_latent) * custom_loss_scale
#loss = blue_loss(denoised_images) * blue_loss_scale
# Occasionally print it out
if i%10==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0])
def generate_final_image(im1,in_prompt="an oil painting of an baby girl with flowers in a park"):
paintings = Styles_paintings(in_prompt)
paintings.generate_styles()
r_image = im1.resize((512,512))
print('image shape is',r_image.size)
paintings.generate_styles_with_custom_loss(r_image)
print(len(paintings.output_styles))
#return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]], [paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]]
return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]]
|