Upload 2 files
Browse files- Era_s20_updt.py +373 -0
- app.py +42 -0
Era_s20_updt.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers as t
|
2 |
+
assert t.__version__=='4.25.1', "Transformers version should be as specified"
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
7 |
+
from huggingface_hub import notebook_login
|
8 |
+
|
9 |
+
# For video display:
|
10 |
+
from IPython.display import HTML
|
11 |
+
from matplotlib import pyplot as plt
|
12 |
+
from pathlib import Path
|
13 |
+
from PIL import Image
|
14 |
+
from torch import autocast
|
15 |
+
from torchvision import transforms as tfms
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
18 |
+
import os
|
19 |
+
import io
|
20 |
+
import base64
|
21 |
+
import torch.nn.functional as F
|
22 |
+
#from pytorch_grad_cam.utils.image import show_cam_on_image
|
23 |
+
|
24 |
+
|
25 |
+
torch.manual_seed(1)
|
26 |
+
|
27 |
+
if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
28 |
+
|
29 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
30 |
+
logging.set_verbosity_error()
|
31 |
+
|
32 |
+
# Set device
|
33 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
34 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
35 |
+
|
36 |
+
import sys,gc,traceback
|
37 |
+
import fastcore.all as fc
|
38 |
+
|
39 |
+
# %% ../nbs/11_initializing.ipynb 11
|
40 |
+
def clean_ipython_hist():
|
41 |
+
# Code in this function mainly copied from IPython source
|
42 |
+
if not 'get_ipython' in globals(): return
|
43 |
+
ip = get_ipython()
|
44 |
+
user_ns = ip.user_ns
|
45 |
+
ip.displayhook.flush()
|
46 |
+
pc = ip.displayhook.prompt_count + 1
|
47 |
+
for n in range(1, pc): user_ns.pop('_i'+repr(n),None)
|
48 |
+
user_ns.update(dict(_i='',_ii='',_iii=''))
|
49 |
+
hm = ip.history_manager
|
50 |
+
hm.input_hist_parsed[:] = [''] * pc
|
51 |
+
hm.input_hist_raw[:] = [''] * pc
|
52 |
+
hm._i = hm._ii = hm._iii = hm._i00 = ''
|
53 |
+
|
54 |
+
# %% ../nbs/11_initializing.ipynb 12
|
55 |
+
def clean_tb():
|
56 |
+
# h/t Piotr Czapla
|
57 |
+
if hasattr(sys, 'last_traceback'):
|
58 |
+
traceback.clear_frames(sys.last_traceback)
|
59 |
+
delattr(sys, 'last_traceback')
|
60 |
+
if hasattr(sys, 'last_type'): delattr(sys, 'last_type')
|
61 |
+
if hasattr(sys, 'last_value'): delattr(sys, 'last_value')
|
62 |
+
|
63 |
+
# %% ../nbs/11_initializing.ipynb 13
|
64 |
+
def clean_mem():
|
65 |
+
clean_tb()
|
66 |
+
clean_ipython_hist()
|
67 |
+
gc.collect()
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
|
70 |
+
clean_mem()
|
71 |
+
|
72 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
73 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
74 |
+
|
75 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
76 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
77 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
78 |
+
|
79 |
+
# The UNet model for generating the latents.
|
80 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
81 |
+
|
82 |
+
# The noise scheduler
|
83 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
84 |
+
|
85 |
+
# To the GPU we go!
|
86 |
+
vae = vae.to(torch_device)
|
87 |
+
text_encoder = text_encoder.to(torch_device)
|
88 |
+
unet = unet.to(torch_device);
|
89 |
+
|
90 |
+
embeds_folder = Path('C:/Users/shivs/Downloads/paintings_embed')
|
91 |
+
file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()]
|
92 |
+
print(file_names)
|
93 |
+
|
94 |
+
style_names = [list(torch.load(embeds_folder/file).keys())[0] for file in file_names]
|
95 |
+
style_names
|
96 |
+
num_added_tokens = tokenizer.add_tokens(style_names)
|
97 |
+
|
98 |
+
added_tokens = list(map(tokenizer.added_tokens_encoder.get,style_names))
|
99 |
+
added_tokens,style_names
|
100 |
+
|
101 |
+
|
102 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
103 |
+
text_encoder.text_model.embeddings.token_embedding
|
104 |
+
|
105 |
+
|
106 |
+
style_dict = {}
|
107 |
+
|
108 |
+
list_styles = [torch.load(embeds_folder/file) for file in file_names]
|
109 |
+
|
110 |
+
|
111 |
+
for k,v in list_styles[0].items():
|
112 |
+
print(k,v.shape)
|
113 |
+
|
114 |
+
style_dict = {style:embedding for each_style in list_styles for style,embedding in each_style.items()}
|
115 |
+
|
116 |
+
list(style_dict)
|
117 |
+
|
118 |
+
for token,style in zip(added_tokens,style_names):
|
119 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[token] = style_dict[style]
|
120 |
+
|
121 |
+
# #checking if we added the embeddings properly to text_encoder
|
122 |
+
# ft_dict = torch.load(embeds_folder/'fairy-tale-painting_embeds.bin')
|
123 |
+
|
124 |
+
# list(ft_dict.keys())[0]
|
125 |
+
|
126 |
+
# ft_dict['<fairy-tale-painting-style>'][:10]
|
127 |
+
|
128 |
+
clean_mem()
|
129 |
+
|
130 |
+
# text_encoder.get_input_embeddings()(torch.tensor(49408, device=torch_device))[:10]
|
131 |
+
|
132 |
+
|
133 |
+
# Prep Scheduler
|
134 |
+
def set_timesteps(scheduler, num_inference_steps):
|
135 |
+
scheduler.set_timesteps(num_inference_steps)
|
136 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
137 |
+
|
138 |
+
def pil_to_latent(input_im):
|
139 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
140 |
+
with torch.no_grad():
|
141 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
142 |
+
return 0.18215 * latent.latent_dist.sample()
|
143 |
+
|
144 |
+
def latents_to_pil(latents):
|
145 |
+
# bath of latents -> list of images
|
146 |
+
latents = (1 / 0.18215) * latents
|
147 |
+
with torch.no_grad():
|
148 |
+
image = vae.decode(latents).sample
|
149 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
150 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
151 |
+
images = (image * 255).round().astype("uint8")
|
152 |
+
pil_images = [Image.fromarray(image) for image in images]
|
153 |
+
return pil_images
|
154 |
+
|
155 |
+
# Access the embedding layer
|
156 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
157 |
+
token_emb_layer # Vocab size 49408, emb_dim 768
|
158 |
+
|
159 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
160 |
+
|
161 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
162 |
+
position_embeddings = pos_emb_layer(position_ids)
|
163 |
+
print(position_embeddings.shape)
|
164 |
+
|
165 |
+
def get_output_embeds(input_embeddings):
|
166 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
167 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
168 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
169 |
+
|
170 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
171 |
+
# so that it doesn't just return the pooled final predictions:
|
172 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
173 |
+
inputs_embeds=input_embeddings,
|
174 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
175 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
176 |
+
output_attentions=None,
|
177 |
+
output_hidden_states=True, # We want the output embs not the final output
|
178 |
+
return_dict=None,
|
179 |
+
)
|
180 |
+
|
181 |
+
# We're interested in the output hidden state only
|
182 |
+
output = encoder_outputs[0]
|
183 |
+
|
184 |
+
# There is a final layer norm we need to pass these through
|
185 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
186 |
+
|
187 |
+
# And now they're ready!
|
188 |
+
return output
|
189 |
+
|
190 |
+
#Generating an image with these modified embeddings
|
191 |
+
|
192 |
+
def generate_with_embs_custom(text_embeddings,seed):
|
193 |
+
height = 512 # default height of Stable Diffusion
|
194 |
+
width = 512 # default width of Stable Diffusion
|
195 |
+
num_inference_steps = 1 # Number of denoising steps
|
196 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
197 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
198 |
+
batch_size = 1
|
199 |
+
|
200 |
+
max_length = text_embeddings.shape[1]
|
201 |
+
uncond_input = tokenizer(
|
202 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
203 |
+
)
|
204 |
+
with torch.no_grad():
|
205 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
206 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
207 |
+
|
208 |
+
# Prep Scheduler
|
209 |
+
set_timesteps(scheduler, num_inference_steps)
|
210 |
+
|
211 |
+
# Prep latents
|
212 |
+
latents = torch.randn(
|
213 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
214 |
+
generator=generator,
|
215 |
+
)
|
216 |
+
latents = latents.to(torch_device)
|
217 |
+
latents = latents * scheduler.init_noise_sigma
|
218 |
+
|
219 |
+
# Loop
|
220 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
221 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
222 |
+
latent_model_input = torch.cat([latents] * 2)
|
223 |
+
sigma = scheduler.sigmas[i]
|
224 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
225 |
+
|
226 |
+
# predict the noise residual
|
227 |
+
with torch.no_grad():
|
228 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
229 |
+
|
230 |
+
# perform guidance
|
231 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
232 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
233 |
+
|
234 |
+
# compute the previous noisy sample x_t -> x_t-1
|
235 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
236 |
+
|
237 |
+
return latents_to_pil(latents)[0]
|
238 |
+
|
239 |
+
|
240 |
+
# ref_image = Image.open('C:/Users/shivs/Downloads/lg.jpg').resize((512,512))
|
241 |
+
# ref_latent = pil_to_latent(ref_image)
|
242 |
+
|
243 |
+
## Guidance through Custom Loss Function
|
244 |
+
def custom_loss(latent):
|
245 |
+
error = F.mse_loss(0.5*latent,0.8*ref_latent)
|
246 |
+
return error
|
247 |
+
|
248 |
+
|
249 |
+
class Styles_paintings():
|
250 |
+
def __init__(self,prompt):
|
251 |
+
self.output_styles = []
|
252 |
+
self.prompt = prompt
|
253 |
+
self.style_names = list(style_dict)
|
254 |
+
self.seeds = [1024+i for i in range(len(self.style_names))]
|
255 |
+
|
256 |
+
def generate_styles(self):
|
257 |
+
#print('The Values are ', list(style_dict)[0])
|
258 |
+
|
259 |
+
for seed,style_name in zip(self.seeds,self.style_names):
|
260 |
+
# Tokenize
|
261 |
+
prompt = f'{self.prompt} in the style of {style_name}'
|
262 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
263 |
+
input_ids = text_input.input_ids.to(torch_device)
|
264 |
+
|
265 |
+
# Get token embeddings
|
266 |
+
token_embeddings = token_emb_layer(input_ids)
|
267 |
+
|
268 |
+
|
269 |
+
# Combine with pos embs
|
270 |
+
input_embeddings = token_embeddings + position_embeddings
|
271 |
+
|
272 |
+
# Feed through to get final output embs
|
273 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
274 |
+
|
275 |
+
# And generate an image with this:
|
276 |
+
self.output_styles.append(generate_with_embs_custom(modified_output_embeddings,seed))
|
277 |
+
|
278 |
+
def generate_styles_with_custom_loss(self, image):
|
279 |
+
height = 512 # default height of Stable Diffusion
|
280 |
+
width = 512 # default width of Stable Diffusion
|
281 |
+
num_inference_steps = 1 #@param # Number of denoising steps
|
282 |
+
guidance_scale = 8 #@param # Scale for classifier-free guidance
|
283 |
+
batch_size = 1
|
284 |
+
custom_loss_scale = 200 #@param
|
285 |
+
#print('image shape there is',image.size)
|
286 |
+
self.output_styles_with_custom_loss = []
|
287 |
+
#ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512))
|
288 |
+
ref_latent = pil_to_latent(ref_image)
|
289 |
+
for seed,style_name in zip(self.seeds,self.style_names):
|
290 |
+
# Tokenize
|
291 |
+
prompt = f'{self.prompt} in the style of {style_name}'
|
292 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
293 |
+
print(f' the prompt is : {prompt} with seed value :{seed}')
|
294 |
+
# Prep text
|
295 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
296 |
+
with torch.no_grad():
|
297 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
298 |
+
|
299 |
+
# And the uncond. input as before:
|
300 |
+
max_length = text_input.input_ids.shape[-1]
|
301 |
+
uncond_input = tokenizer(
|
302 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
303 |
+
)
|
304 |
+
with torch.no_grad():
|
305 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
306 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
307 |
+
|
308 |
+
# Prep Scheduler
|
309 |
+
set_timesteps(scheduler, num_inference_steps)
|
310 |
+
|
311 |
+
# Prep latents
|
312 |
+
latents = torch.randn(
|
313 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
314 |
+
generator=generator,)
|
315 |
+
latents = latents.to(torch_device)
|
316 |
+
latents = latents * scheduler.init_noise_sigma
|
317 |
+
|
318 |
+
# Loop
|
319 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
320 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
321 |
+
latent_model_input = torch.cat([latents] * 2)
|
322 |
+
sigma = scheduler.sigmas[i]
|
323 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
324 |
+
|
325 |
+
# predict the noise residual
|
326 |
+
with torch.no_grad():
|
327 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
328 |
+
|
329 |
+
# perform CFG
|
330 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
331 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
332 |
+
|
333 |
+
#### ADDITIONAL GUIDANCE ###
|
334 |
+
if i%5 == 0:
|
335 |
+
# Requires grad on the latents
|
336 |
+
latents = latents.detach().requires_grad_()
|
337 |
+
|
338 |
+
# Get the predicted x0:
|
339 |
+
latents_x0 = latents - sigma * noise_pred
|
340 |
+
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
341 |
+
|
342 |
+
# Decode to image space
|
343 |
+
#denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
344 |
+
|
345 |
+
# Calculate loss
|
346 |
+
loss = custom_loss(latents_x0) * custom_loss_scale
|
347 |
+
#loss = blue_loss(denoised_images) * blue_loss_scale
|
348 |
+
|
349 |
+
# Occasionally print it out
|
350 |
+
if i%10==0:
|
351 |
+
print(i, 'loss:', loss.item())
|
352 |
+
|
353 |
+
# Get gradient
|
354 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
355 |
+
|
356 |
+
# Modify the latents based on this gradient
|
357 |
+
latents = latents.detach() - cond_grad * sigma**2
|
358 |
+
|
359 |
+
# Now step with scheduler
|
360 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
361 |
+
|
362 |
+
self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0])
|
363 |
+
|
364 |
+
def generate_final_image(im1,in_prompt):
|
365 |
+
paintings = Styles_paintings(in_prompt)
|
366 |
+
paintings.generate_styles()
|
367 |
+
r_image = im1.resize((512,512))
|
368 |
+
print('image shape is',r_image.size)
|
369 |
+
paintings.generate_styles_with_custom_loss(r_image)
|
370 |
+
|
371 |
+
#print(len(paintings.output_styles))
|
372 |
+
|
373 |
+
return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]],[paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]]
|
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[5]:
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
from Era_s20_updt import generate_final_image
|
10 |
+
|
11 |
+
|
12 |
+
gr.Interface(
|
13 |
+
|
14 |
+
generate_final_image,
|
15 |
+
inputs=[
|
16 |
+
#gr.Image(label="Input Image"),
|
17 |
+
gr.Image(type='pil', label="Guided Image for Loss"),
|
18 |
+
gr.Text(label="Input Prompt")
|
19 |
+
|
20 |
+
#gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
21 |
+
#gr.Slider(0, 1, value=0.4, label="Threshold"),
|
22 |
+
#gr.Checkbox(label="Show Grad Cam"),
|
23 |
+
#gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
|
24 |
+
],
|
25 |
+
outputs =
|
26 |
+
[
|
27 |
+
gr.Gallery(rows=2, columns=1"),
|
28 |
+
gr.Gallery(rows=2, columns=1),
|
29 |
+
gr.Gallery(rows=2, columns=1),
|
30 |
+
gr.Gallery(rows=2, columns=1),
|
31 |
+
gr.Gallery(rows=2, columns=1),
|
32 |
+
gr.Gallery(rows=2, columns=1),
|
33 |
+
gr.Gallery(rows=2, columns=1),
|
34 |
+
gr.Gallery(rows=2, columns=1),
|
35 |
+
gr.Gallery(rows=2, columns=1),
|
36 |
+
gr.Gallery(rows=2, columns=1)
|
37 |
+
|
38 |
+
],
|
39 |
+
title="Stable Diffusion",
|
40 |
+
layout="Vertical"
|
41 |
+
).launch()
|
42 |
+
|