Export box coordinates in demo notebook

#10
Files changed (2) hide show
  1. app.py +17 -1
  2. notebooks/demo.ipynb +55 -14
app.py CHANGED
@@ -176,11 +176,27 @@ def get_ind_to_filter(text, word_ids, keywords):
176
 
177
  return inds_to_filter
178
 
 
 
 
 
 
 
 
 
 
 
179
  def generate_heatmap(image, boxes):
180
  # Plot results.
181
  (w, h) = image.size
182
  det_map = np.zeros((h, w))
183
- det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
 
 
 
 
 
 
184
  det_map = ndimage.gaussian_filter(
185
  det_map, sigma=(w // 200, w // 200), order=0
186
  )
 
176
 
177
  return inds_to_filter
178
 
179
+ def get_xy_from_boxes(image, boxes):
180
+ """
181
+ Get box centers and return in image coordinates
182
+ """
183
+ (w, h) = image.size
184
+ x = w * boxes[:, 0]
185
+ y = h * boxes[:, 1]
186
+
187
+ return x, y
188
+
189
  def generate_heatmap(image, boxes):
190
  # Plot results.
191
  (w, h) = image.size
192
  det_map = np.zeros((h, w))
193
+ x, y = get_xy_from_boxes(image, boxes)
194
+
195
+ # Box centers are floating point, convert to int and clip them at edge of box
196
+ x = np.clip(np.around(x).astype(int), 0, w - 1)
197
+ y = np.clip(np.around(y).astype(int), 0, h - 1)
198
+
199
+ det_map[y, x] = 1
200
  det_map = ndimage.gaussian_filter(
201
  det_map, sigma=(w // 200, w // 200), order=0
202
  )
notebooks/demo.ipynb CHANGED
@@ -6,7 +6,7 @@
6
  "id": "yxig5CdZuHb9"
7
  },
8
  "source": [
9
- "# CountGD - Multimodela open-world object counting\n",
10
  "\n"
11
  ]
12
  },
@@ -89,7 +89,13 @@
89
  "source": [
90
  "### Install Dependencies\n",
91
  "\n",
92
- "The environment will be setup with the code, models and required dependencies."
 
 
 
 
 
 
93
  ]
94
  },
95
  {
@@ -114,8 +120,10 @@
114
  " git clone \"https://huggingface.co/spaces/nikigoli/countgd\" /content/countgd\n",
115
  " fi\n",
116
  " cd /content/countgd\n",
117
- " git fetch origin refs/pr/5:refs/remotes/origin/pr/5\n",
118
- " git checkout pr/5\n",
 
 
119
  "else\n",
120
  " # TODO check if cwd is the correct git repo\n",
121
  " # If users use vscode, then we set the default start directory to root of the repo\n",
@@ -128,11 +136,20 @@
128
  "pip install --upgrade pip setuptools wheel\n",
129
  "pip install -r requirements.txt\n",
130
  "\n",
131
- "# Compile modules\n",
132
- "export CUDA_HOME=/usr/local/cuda/\n",
133
  "cd models/GroundingDINO/ops\n",
134
- "python3 setup.py build\n",
135
- "pip install .\n",
 
 
 
 
 
 
 
 
 
 
 
136
  "python3 test.py"
137
  ]
138
  },
@@ -189,6 +206,7 @@
189
  " get_device,\n",
190
  " get_args_parser,\n",
191
  " generate_heatmap,\n",
 
192
  " predict,\n",
193
  ")\n",
194
  "args = get_args_parser().parse_args([])\n",
@@ -197,7 +215,7 @@
197
  "model = model.to(device)\n",
198
  "\n",
199
  "run = lambda image, text: predict(model, transform, image, text, None, device)\n",
200
- "get_output = lambda image, boxes: (len(boxes), generate_heatmap(image, boxes))\n"
201
  ]
202
  },
203
  {
@@ -271,7 +289,7 @@
271
  },
272
  {
273
  "cell_type": "code",
274
- "execution_count": 15,
275
  "metadata": {
276
  "id": "rFXRk-_uuHb_"
277
  },
@@ -279,6 +297,17 @@
279
  "source": [
280
  "from tqdm import tqdm\n",
281
  "import os\n",
 
 
 
 
 
 
 
 
 
 
 
282
  "def process_zipfile(input_zipfile: Path, text: str):\n",
283
  " if not input_zipfile.exists() or not input_zipfile.is_file() or not os.access(input_zipfile, os.R_OK):\n",
284
  " logger.error(f'Cannot open / read zipfile: {input_zipfile}. Please check if it exists')\n",
@@ -290,14 +319,24 @@
290
  "\n",
291
  " output_zipfile = input_zipfile.parent / f'{input_zipfile.stem}_countgd.zip'\n",
292
  " output_csvfile = input_zipfile.parent / f'{input_zipfile.stem}.csv'\n",
 
 
 
293
  "\n",
294
  " logger.info(f'Writing outputs to {output_zipfile.name} and {output_csvfile.name} in {input_zipfile.parent} folder')\n",
295
  " with zipfile_writer(output_zipfile) as add_to_zip, csvfile_writer(output_csvfile) as write_row:\n",
296
  " for filename, im in tqdm(images_from_zipfile(input_zipfile)):\n",
297
- " boxes, _ = run(im, text)\n",
298
- " count, heatmap = get_output(im, boxes)\n",
299
- " write_row({'filename': filename, 'count': count})\n",
300
- " add_to_zip(heatmap, filename)"
 
 
 
 
 
 
 
301
  ]
302
  },
303
  {
@@ -310,6 +349,8 @@
310
  "\n",
311
  "Use the form on colab to set the parameters, providing the zipfile with input images and a promt text representing the object you want to count.\n",
312
  "\n",
 
 
313
  "If you are not running on colab, change the values in the next cell\n",
314
  "\n",
315
  "Make sure to run the cell once you change the value."
 
6
  "id": "yxig5CdZuHb9"
7
  },
8
  "source": [
9
+ "# CountGD - Multimodal open-world object counting\n",
10
  "\n"
11
  ]
12
  },
 
89
  "source": [
90
  "### Install Dependencies\n",
91
  "\n",
92
+ "The environment will be setup with the code, models and required dependencies.\n",
93
+ "\n",
94
+ "*Note for Colab users*\n",
95
+ "\n",
96
+ "To reduce the waiting time, you can use the pre-built wheel file available [here](https://drive.google.com/file/d/1Vl_6DAWfnVU7HFX5y_5TqqbkyTcjONbm/view?usp=sharing) - Visit the link and add it as a shortcut to your \"My Drive\" folder or edit the path accordingly below. (Line 28)\n",
97
+ "\n",
98
+ "Alternatively, if you are unable to use google drive, you can download the file to your machine & upload it to the colab runtime when you connect to it and update the path below to install it from there. (Line 28)"
99
  ]
100
  },
101
  {
 
120
  " git clone \"https://huggingface.co/spaces/nikigoli/countgd\" /content/countgd\n",
121
  " fi\n",
122
  " cd /content/countgd\n",
123
+ "\n",
124
+ " # If you are testing out WIP items, uncomment the following and change the pr ref\n",
125
+ " # git fetch origin refs/pr/10:refs/remotes/origin/pr/10\n",
126
+ " # git checkout pr/10 && git pull\n",
127
  "else\n",
128
  " # TODO check if cwd is the correct git repo\n",
129
  " # If users use vscode, then we set the default start directory to root of the repo\n",
 
136
  "pip install --upgrade pip setuptools wheel\n",
137
  "pip install -r requirements.txt\n",
138
  "\n",
 
 
139
  "cd models/GroundingDINO/ops\n",
140
+ "if [ \"${RUNNING_IN_COLAB}\" == \"True\" ]; then\n",
141
+ " export CUDA_HOME=/usr/local/cuda/\n",
142
+ " if ! pip install \"/content/drive/MyDrive/MultiScaleDeformableAttention-1.0-cp311-cp311-linux_x86_64.whl\"\n",
143
+ " then\n",
144
+ " echo \"failed to install wheel, trying to build from source\";\n",
145
+ " python3 setup.py build\n",
146
+ " pip install .\n",
147
+ " fi\n",
148
+ "else\n",
149
+ " # We try to build the module as we dont know what environment we are running on\n",
150
+ " python3 setup.py build\n",
151
+ " pip install .\n",
152
+ "fi\n",
153
  "python3 test.py"
154
  ]
155
  },
 
206
  " get_device,\n",
207
  " get_args_parser,\n",
208
  " generate_heatmap,\n",
209
+ " get_xy_from_boxes,\n",
210
  " predict,\n",
211
  ")\n",
212
  "args = get_args_parser().parse_args([])\n",
 
215
  "model = model.to(device)\n",
216
  "\n",
217
  "run = lambda image, text: predict(model, transform, image, text, None, device)\n",
218
+ "get_output = lambda image, boxes: (len(boxes), get_xy_from_boxes(image, boxes), generate_heatmap(image, boxes))\n"
219
  ]
220
  },
221
  {
 
289
  },
290
  {
291
  "cell_type": "code",
292
+ "execution_count": null,
293
  "metadata": {
294
  "id": "rFXRk-_uuHb_"
295
  },
 
297
  "source": [
298
  "from tqdm import tqdm\n",
299
  "import os\n",
300
+ "import json\n",
301
+ "def convert_xy_to_json(xy: tuple):\n",
302
+ " x, y = xy\n",
303
+ " pts = []\n",
304
+ " for _x, _y in zip(x.tolist(), y.tolist()):\n",
305
+ " _x, _y = round(_x, 3), round(_y, 3)\n",
306
+ " pts.append([_x, _y])\n",
307
+ "\n",
308
+ " # List of [x, y] points\n",
309
+ " return pts\n",
310
+ "\n",
311
  "def process_zipfile(input_zipfile: Path, text: str):\n",
312
  " if not input_zipfile.exists() or not input_zipfile.is_file() or not os.access(input_zipfile, os.R_OK):\n",
313
  " logger.error(f'Cannot open / read zipfile: {input_zipfile}. Please check if it exists')\n",
 
319
  "\n",
320
  " output_zipfile = input_zipfile.parent / f'{input_zipfile.stem}_countgd.zip'\n",
321
  " output_csvfile = input_zipfile.parent / f'{input_zipfile.stem}.csv'\n",
322
+ " output_xyjson = input_zipfile.parent / f'{input_zipfile.stem}_xy.json'\n",
323
+ "\n",
324
+ " xy_map = {}\n",
325
  "\n",
326
  " logger.info(f'Writing outputs to {output_zipfile.name} and {output_csvfile.name} in {input_zipfile.parent} folder')\n",
327
  " with zipfile_writer(output_zipfile) as add_to_zip, csvfile_writer(output_csvfile) as write_row:\n",
328
  " for filename, im in tqdm(images_from_zipfile(input_zipfile)):\n",
329
+ " try:\n",
330
+ " boxes, _ = run(im, text)\n",
331
+ " count, xy, heatmap = get_output(im, boxes)\n",
332
+ " logger.info(f'Count: {count} - {filename}')\n",
333
+ " xy_map[filename] = convert_xy_to_json(xy)\n",
334
+ " write_row({'filename': filename, 'count': count})\n",
335
+ " add_to_zip(heatmap, filename)\n",
336
+ " except Exception:\n",
337
+ " logger.error(f'failed to process {filename}')\n",
338
+ "\n",
339
+ " output_xyjson.write_text(json.dumps(xy_map))"
340
  ]
341
  },
342
  {
 
349
  "\n",
350
  "Use the form on colab to set the parameters, providing the zipfile with input images and a promt text representing the object you want to count.\n",
351
  "\n",
352
+ "Use the fileupload button to add the zip file to the `countgd` directory or change the path below accordingly.\n",
353
+ "\n",
354
  "If you are not running on colab, change the values in the next cell\n",
355
  "\n",
356
  "Make sure to run the cell once you change the value."