Spaces:
Sleeping
Sleeping
File size: 9,252 Bytes
10e9b7d d5eb6ce 10e9b7d eccf8e4 7d65c66 3c4371f 8665f65 3c85cbc 208de35 8665f65 f1bf21c 10e9b7d e80aab9 3db6293 e80aab9 31243f4 1a07a92 e7d36f3 31243f4 8665f65 dfbde74 0f4fca1 8665f65 6b8c9d9 dfbde74 8665f65 eaad269 d5eb6ce 4021bf3 0f4fca1 1a07a92 0f4fca1 3c4371f 1a07a92 0f4fca1 3c4371f 7e4a06b 0f4fca1 7d65c66 3c4371f 1a07a92 7e4a06b 31243f4 e80aab9 1a07a92 31243f4 3c4371f 31243f4 0f4fca1 1a07a92 36ed51a c1fd3d2 3c4371f 1a07a92 31243f4 eccf8e4 31243f4 7d65c66 1a07a92 31243f4 1a07a92 31243f4 0f4fca1 31243f4 0f4fca1 31243f4 e80aab9 1a07a92 3c4371f 1a07a92 31243f4 1a07a92 0f4fca1 7d65c66 31243f4 0f4fca1 31243f4 3c4371f 31243f4 1a07a92 7d65c66 31243f4 1a07a92 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 0f4fca1 31243f4 e80aab9 1a07a92 e80aab9 1a07a92 31243f4 0ee0419 e514fd7 0f4fca1 e514fd7 e80aab9 1a07a92 7e4a06b e80aab9 1a07a92 31243f4 1a07a92 31243f4 0f4fca1 31243f4 e80aab9 3c4371f 0f4fca1 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 0f4fca1 7d65c66 5bfd15c 627d094 5bfd15c f1bf21c 0ae8b9f f1bf21c 0ae8b9f f1bf21c 5bfd15c 3c4371f 31243f4 0f4fca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import re
import gradio as gr
import requests
import inspect
import pandas as pd
# from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
# from llama_index.core.agent.workflow import AgentWorkflow
# from llama_index.core.tools import FunctionTool
from agent_llama import all_tools
from agent_graph import build_graph
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# A custom agent class that wraps an LLM and agent workflow from llama index
# class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# self.llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-beta")
# self.agent = AgentWorkflow.from_tools_or_functions(
# all_tools, # make sure all_tools are sync functions
# llm=self.llm,
# system_prompt="You are a general AI assistant. Think step-by-step, and return only the final answer on the last line."
# )
# def __call__(self, question: str) -> str:
# try:
# response = self.agent.run(question) # sync version of arun()
# return str(response)
# except Exception as e:
# return f"Agent error: {e}"
# Using LangGraph
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
user_message = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": user_message})
answer = result['messages'][-1].content
# Use regex to extract only the final answer
match = re.search(r"FINAL ANSWER:\s*(.*)", answer)
return match.group(1).strip() if match else answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Runs agent across GAIA questions, submits the answers and returns the results
"""
# Retrive HF space ID from enviornment variables
space_id = os.getenv("SPACE_ID")
# Check if user is logged in
if profile: # Populated after log in gr.LoginButton
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# Initialize GAIA question and submission urls
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Initialize agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Initialize agent repository to be used for agent code
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetching questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
# JSON containing GAIA questions
questions_data = response.json()
# Guard clause - Check for empty list or errors
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# Initialize empty logs for results and answers to be submitted
answers_payload = [] # Task ID + Submitted Answer - Used for evaluation
results_log = [] # Task ID + Question + Submitted Answer - Used for display
# Run agent on questions
print(f"Running agent on {len(questions_data)} questions...")
# For loop to pull individual questions as agent input
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Submit question to agent
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Initialize submission data
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
# POST submission data
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Initialize Gradio app
with gr.Blocks() as demo:
# Markdown text blocks
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and see the score.
"""
)
# Adds a login button for authentication
gr.LoginButton()
# A button that triggers evaluation logic when clicked
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Non interactive textbox to show result status
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) #Gives
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("🔧 Running startup checks...\n")
# Check WikipediaLoader
try:
from langchain_community.document_loaders import WikipediaLoader
print("✅ WikipediaLoader imported successfully.")
# Try fetching a test page
test_docs = WikipediaLoader(query="Alan Turing", load_max_docs=1).load()
if test_docs and test_docs[0].page_content.strip():
print("✅ WikipediaLoader can fetch content.\n")
else:
print("⚠️ WikipediaLoader returned no content.\n")
except Exception as e:
print("❌ WikipediaLoader failed:", e, "\n")
# Check Google Gemini LLM
try:
from langchain_google_genai import ChatGoogleGenerativeAI
import os
if os.getenv("GOOGLE_API_KEY"):
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
print("✅ Google Gemini model instantiated successfully.\n")
else:
print("⚠️ GOOGLE_API_KEY not found in environment.\n")
except Exception as e:
print("❌ langchain-google-genai or Gemini setup failed:", e, "\n")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|