File size: 2,653 Bytes
31defb6
 
 
 
 
 
 
 
 
 
 
 
 
979d3c4
 
31defb6
 
 
 
 
979d3c4
b10969b
5b6b68a
e47af5b
adbb180
15134ce
 
 
31defb6
 
 
 
 
 
 
 
96369f4
63a0440
31defb6
 
 
 
 
a2934a4
 
 
08a4021
 
61a2310
a11f33b
 
 
3bf7ebf
 
6a7b968
31defb6
 
5f148df
31defb6
 
 
 
 
 
 
 
 
 
08fa659
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import whisper
import os
from pytube import YouTube
import pandas as pd
import plotly_express as px
import nltk
import plotly.graph_objects as go
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import streamlit as st
import en_core_web_lg

from functions import *

nltk.download('punkt')

from nltk import sent_tokenize

st.sidebar.header("Home")

asr_model_options = ['base.en','small.en']
    
asr_model_name = st.sidebar.selectbox("Whisper Model Options", options=asr_model_options, key='sbox')

with st.spinner('Loading all models...'):
    sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer  = load_models()

st.markdown("## Earnings Call Analysis Whisperer")

st.markdown(
    """
    This app assists finance analysts with transcribing and analysis Earnings Calls by carrying out the following tasks:
    - Transcribing earnings calls using Open AI's [Whisper](https://github.com/openai/whisper).
    - Analysing the sentiment of transcribed text using the quantized version of [FinBert-Tone](https://huggingface.co/nickmuchi/quantized-optimum-finbert-tone).
    - Summarization of the call with [FaceBook-Bart-Large-CNN](https://huggingface.co/facebook/bart-large-cnn) model with entity extraction
    - Question Answering engine powered by Langchain and [Sentence Transformers](https://huggingface.co/sentence-transformers/all-mpnet-base-v2).
    - Knowledge Graph generation using [Babelscape/rebel-large](https://huggingface.co/Babelscape/rebel-large) model.
    
    **πŸ‘‡ Enter a YouTube Earnings Call URL below and navigate to the sidebar tabs** 
    
"""
)

if 'sbox' not in st.session_state:
    st.session_state.sbox = asr_model_name
    
if "url" not in st.session_state:
    st.session_state.url = "https://www.youtube.com/watch?v=iWobmXvCM0c"
    
if "earnings_passages" not in st.session_state:
    st.session_state["earnings_passages"] = ''
    
if "sen_df" not in st.session_state:
    st.session_state['sen_df'] = ''
        
url_input = st.text_input(
        label="Enter YouTube URL, example below is FaceBook Earnings Call 2022", key="url")
        
st.markdown(
    "<h3 style='text-align: center; color: red;'>OR</h3>",
    unsafe_allow_html=True
)

upload_wav = st.file_uploader("Upload a .wav sound file ",key="upload")

auth_token = os.environ.get("auth_token")

st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-earnings-call-whisperer)")