File size: 8,977 Bytes
50dd923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import argparse
import csv
import json
import logging
import pickle
import time
import glob
from pathlib import Path

import numpy as np
import torch
import transformers

import src.index
import src.contriever
import src.utils
import src.slurm
import src.data
from src.evaluation import calculate_matches
import src.normalize_text

os.environ["TOKENIZERS_PARALLELISM"] = "true"


def embed_queries(args, queries, model, tokenizer):
    model.eval()
    embeddings, batch_question = [], []
    with torch.no_grad():

        for k, q in enumerate(queries):
            if args.lowercase:
                q = q.lower()
            if args.normalize_text:
                q = src.normalize_text.normalize(q)
            batch_question.append(q)

            if len(batch_question) == args.per_gpu_batch_size or k == len(queries) - 1:

                encoded_batch = tokenizer.batch_encode_plus(
                    batch_question,
                    return_tensors="pt",
                    max_length=args.question_maxlength,
                    padding=True,
                    truncation=True,
                )
                encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()}
                output = model(**encoded_batch)
                embeddings.append(output.cpu())

                batch_question = []

    embeddings = torch.cat(embeddings, dim=0)
    print(f"Questions embeddings shape: {embeddings.size()}")

    return embeddings.numpy()


def index_encoded_data(index, embedding_files, indexing_batch_size):
    allids = []
    allembeddings = np.array([])
    for i, file_path in enumerate(embedding_files):
        print(f"Loading file {file_path}")
        with open(file_path, "rb") as fin:
            ids, embeddings = pickle.load(fin)

        allembeddings = np.vstack((allembeddings, embeddings)) if allembeddings.size else embeddings
        allids.extend(ids)
        while allembeddings.shape[0] > indexing_batch_size:
            allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size)

    while allembeddings.shape[0] > 0:
        allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size)

    print("Data indexing completed.")


def add_embeddings(index, embeddings, ids, indexing_batch_size):
    end_idx = min(indexing_batch_size, embeddings.shape[0])
    ids_toadd = ids[:end_idx]
    embeddings_toadd = embeddings[:end_idx]
    ids = ids[end_idx:]
    embeddings = embeddings[end_idx:]
    index.index_data(ids_toadd, embeddings_toadd)
    return embeddings, ids


def validate(data, workers_num):
    match_stats = calculate_matches(data, workers_num)
    top_k_hits = match_stats.top_k_hits

    print("Validation results: top k documents hits %s", top_k_hits)
    top_k_hits = [v / len(data) for v in top_k_hits]
    message = ""
    for k in [5, 10, 20, 100]:
        if k <= len(top_k_hits):
            message += f"R@{k}: {top_k_hits[k-1]} "
    print(message)
    return match_stats.questions_doc_hits


def add_passages(data, passages, top_passages_and_scores):
    # add passages to original data
    merged_data = []
    assert len(data) == len(top_passages_and_scores)
    for i, d in enumerate(data):
        results_and_scores = top_passages_and_scores[i]
        docs = [passages[doc_id] for doc_id in results_and_scores[0]]
        scores = [str(score) for score in results_and_scores[1]]
        ctxs_num = len(docs)
        d["ctxs"] = [
            {
                "id": results_and_scores[0][c],
                "title": docs[c]["title"],
                "text": docs[c]["text"],
                "score": scores[c],
            }
            for c in range(ctxs_num)
        ]


def add_hasanswer(data, hasanswer):
    # add hasanswer to data
    for i, ex in enumerate(data):
        for k, d in enumerate(ex["ctxs"]):
            d["hasanswer"] = hasanswer[i][k]


def load_data(data_path):
    if data_path.endswith(".json"):
        with open(data_path, "r") as fin:
            data = json.load(fin)
    elif data_path.endswith(".jsonl"):
        data = []
        with open(data_path, "r") as fin:
            for k, example in enumerate(fin):
                example = json.loads(example)
                data.append(example)
    return data


def main(args):

    print(f"Loading model from: {args.model_name_or_path}")
    model, tokenizer, _ = src.contriever.load_retriever(args.model_name_or_path)
    model.eval()
    model = model.cuda()
    if not args.no_fp16:
        model = model.half()

    index = src.index.Indexer(args.projection_size, args.n_subquantizers, args.n_bits)

    # index all passages
    input_paths = glob.glob(args.passages_embeddings)
    input_paths = sorted(input_paths)
    embeddings_dir = os.path.dirname(input_paths[0])
    index_path = os.path.join(embeddings_dir, "index.faiss")
    if args.save_or_load_index and os.path.exists(index_path):
        index.deserialize_from(embeddings_dir)
    else:
        print(f"Indexing passages from files {input_paths}")
        start_time_indexing = time.time()
        index_encoded_data(index, input_paths, args.indexing_batch_size)
        print(f"Indexing time: {time.time()-start_time_indexing:.1f} s.")
        if args.save_or_load_index:
            index.serialize(embeddings_dir)

    # load passages
    passages = src.data.load_passages(args.passages)
    passage_id_map = {x["id"]: x for x in passages}

    data_paths = glob.glob(args.data)
    alldata = []
    for path in data_paths:
        data = load_data(path)
        output_path = os.path.join(args.output_dir, os.path.basename(path))

        queries = [ex["question"] for ex in data]
        questions_embedding = embed_queries(args, queries, model, tokenizer)

        # get top k results
        start_time_retrieval = time.time()
        top_ids_and_scores = index.search_knn(questions_embedding, args.n_docs)
        print(f"Search time: {time.time()-start_time_retrieval:.1f} s.")

        add_passages(data, passage_id_map, top_ids_and_scores)
        hasanswer = validate(data, args.validation_workers)
        add_hasanswer(data, hasanswer)
        os.makedirs(os.path.dirname(output_path), exist_ok=True)
        with open(output_path, "w") as fout:
            for ex in data:
                json.dump(ex, fout, ensure_ascii=False)
                fout.write("\n")
        print(f"Saved results to {output_path}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--data",
        required=True,
        type=str,
        default=None,
        help=".json file containing question and answers, similar format to reader data",
    )
    parser.add_argument("--passages", type=str, default=None, help="Path to passages (.tsv file)")
    parser.add_argument("--passages_embeddings", type=str, default=None, help="Glob path to encoded passages")
    parser.add_argument(
        "--output_dir", type=str, default=None, help="Results are written to outputdir with data suffix"
    )
    parser.add_argument("--n_docs", type=int, default=100, help="Number of documents to retrieve per questions")
    parser.add_argument(
        "--validation_workers", type=int, default=32, help="Number of parallel processes to validate results"
    )
    parser.add_argument("--per_gpu_batch_size", type=int, default=64, help="Batch size for question encoding")
    parser.add_argument(
        "--save_or_load_index", action="store_true", help="If enabled, save index and load index if it exists"
    )
    parser.add_argument(
        "--model_name_or_path", type=str, help="path to directory containing model weights and config file"
    )
    parser.add_argument("--no_fp16", action="store_true", help="inference in fp32")
    parser.add_argument("--question_maxlength", type=int, default=512, help="Maximum number of tokens in a question")
    parser.add_argument(
        "--indexing_batch_size", type=int, default=1000000, help="Batch size of the number of passages indexed"
    )
    parser.add_argument("--projection_size", type=int, default=768)
    parser.add_argument(
        "--n_subquantizers",
        type=int,
        default=0,
        help="Number of subquantizer used for vector quantization, if 0 flat index is used",
    )
    parser.add_argument("--n_bits", type=int, default=8, help="Number of bits per subquantizer")
    parser.add_argument("--lang", nargs="+")
    parser.add_argument("--dataset", type=str, default="none")
    parser.add_argument("--lowercase", action="store_true", help="lowercase text before encoding")
    parser.add_argument("--normalize_text", action="store_true", help="normalize text")

    args = parser.parse_args()
    src.slurm.init_distributed_mode(args)
    main(args)