File size: 2,886 Bytes
411678e
31b6e92
411678e
 
 
3b52176
 
 
 
 
 
 
 
754ce49
 
2e0531d
754ce49
 
 
3b52176
ee6d004
3b52176
ee6d004
2e0531d
ee6d004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68b53b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import streamlit as st
from functions import *

st.set_page_config(page_title="Earnings Semantic Search", page_icon="πŸ”Ž")
st.sidebar.header("Semantic Search")
st.markdown("## Earnings Semantic Search with SBert")

search_input = st.text_input(
        label='Enter Your Search Query, e.g "What challenges did the business face?"', key='search')
        
top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5,value=2)

window_size = st.sidebar.slider("Number of Sentences Generated in Search Response",min_value=1,max_value=5,value=3)
    
if "sen_df" not in st.session_state:
    st.session_state['sen_df'] = ''
    
if "earnings_passages" not in st.session_state:
    st.session_state["earnings_passages"] = ''

if st.session_state["sen_df"] or st.session_state["earnings_passages"]:

    ## Save to a dataframe for ease of visualization
    sen_df = st.session_state['sen_df']
        
    passages = preprocess_plain_text(st.session_state['earnings_passages'],window_size=window_size)
    
    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    corpus_embeddings = sbert.encode(passages, convert_to_tensor=True, show_progress_bar=True)
    question_embedding = sbert.encode(search_input, convert_to_tensor=True)
    question_embedding = question_embedding.cpu()
    hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k,score_function=util.dot_score)
    hits = hits[0]  # Get the hits for the first query
    
    ##### Re-Ranking #####
    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)
    
    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]
    
    # Output of top-3 hits from re-ranker
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    
    score='cross-score'
    df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:2]],columns=['Score','Text'])
    df['Score'] = round(df['Score'],2)
    
    def gen_annotated_text(para):
        tag_list = []
        for i in sent_tokenize(para):
            label = sen_df.loc[sen_df['text']==i, 'label'].values[0]
            if label == 'Negative':
                tag_list.append((i,label,'#faa'))
            elif label == 'Positive':
                tag_list.append((i,label,'#afa'))
            else:
                tag_list.append((i,label,'#fea'))
        return tag_list  
    
    text_to_annotate = [gen_annotated_text(para) for para in df.Text.tolist()]
    
    for i in text_to_annotate:
        annotated_text(i)
        
else:
    
    st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')