File size: 11,322 Bytes
a8a95aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b0f8a
 
 
a8a95aa
 
 
 
 
 
 
 
 
 
 
bb45a7e
 
 
 
a8a95aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45a7e
 
a8a95aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45a7e
a8a95aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import io
from deepface import DeepFace
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
import os


os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

def get_original_image(url_input):
    """Extract image from URL"""
    
    if validators.url(url_input):
        image = Image.open(requests.get(url_input, stream=True).raw)
        
        return image
    
def face_verification(img1, img2, dist,model,detector):
    """Check the similarity of 2 images"""
    
    try:
        result = DeepFace.verify(img1_path=img1,img2_path=img2,distance_metric=dist,model_name=model,detector_backend=detector)
    except:
        result = DeepFace.verify(img1_path=img1,img2_path=img2,distance_metric=dist,model_name=model,detector_backend=detector,\
                                enforce_detection=False)
        
    return result['verified'],round(result['distance'],2),result['threshold'],result['model'],result['similarity_metric']

def facial_analysis(img1, detector):
    """Determine emotion, race, gender and age from models"""
    
    try:
        #facial analysis
        obj = DeepFace.analyze(img_path = img1, actions = ['age', 'gender', 'race', 'emotion'],detector_backend=detector)
    except:
        obj = DeepFace.analyze(img_path = img1, actions = ['age', 'gender', 'race', 'emotion'],detector_backend=detector,\
                              enforce_detection=False)
    
    return obj['age'],obj['gender'],obj['dominant_race'],obj['dominant_emotion']

def face_recognition(img1,dir_loc,model,dist,detector):
    """Facial recognition given a database or folder location with images"""
    
    #face recognition
    rec = DeepFace.find(img_path = img_1, db_path = dir_loc,distance_metric=dist,model_name=model,detector_backend=detector)
    
    return rec
            
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))


title = """<h1 id="title">DeepFace for Facial Recognition and Analysis</h1>"""

description = """
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace, Dlib and SFace.

Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
Please click on the Github link for more information: [DeepFace](https://github.com/serengil/deepface)

This space captures facial verification which determines if 2 facial images are the same person and the facial attribute analysis which predicts age,gender, emotion and race. The attribute analysis for age and race is a hit and miss based on my personal experience and the reported test accuracy from the Github page is 68% for race prediction. The age prediction model got ± 4.65 MAE.

The prediction models work better with images that mainly show the face.
"""

models = ["VGG-Face", "Facenet", "Facenet512", "OpenFace", "DeepFace", "DeepID", "ArcFace", "Dlib", "SFace"]
metrics = ["cosine", "euclidean", "euclidean_l2"]
backends = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface', 'mediapipe']

urls = [["https://media.vanityfair.com/photos/6036a15657f37ea4415256d2/master/w_2560%2Cc_limit/1225292516",\
        "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQSuPVx0JaEW2yp4mT8ZwqFANMT3RhoxcwuuGLhnKgxsA&s"]]

url = [['https://media.vanityfair.com/photos/6036a15657f37ea4415256d2/master/w_2560%2Cc_limit/1225292516']]

all_images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))])
nick = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*nick*.j*g'))])
nicks_images = [[i[0] for i in nick]]

twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(twitter_link)
    model_options = gr.Dropdown(choices=models,label='Facial Recognition Models',value=models[1],show_label=True)
    metric_options = gr.Radio(choices=metrics,label='Distance Metric', value=metrics[0],show_label=True)
    backends_options = gr.Dropdown(choices=backends,label='Face Detector',value=backends[-2],show_label=True)
    
    with gr.Tabs():
        with gr.TabItem('Facial Recognition'):
            with gr.Tabs():
                with gr.TabItem("URL Images"):
                    
                    with gr.Row():
                        with gr.Column():
                            url_input_1_fr = gr.Textbox(lines=2,label='Image URL 1')
                            url_image_1_fr = gr.Image(label='Image 1',shape=(550,550),interactive=False)
                            url_input_1_fr.change(get_original_image, url_input_1_fr, url_image_1_fr)
                            url_input_2 = gr.Textbox(lines=2,label='Image URL 2')
                            url_image_2 = gr.Image(label='Image 2',shape=(550,550),interactive=False)
                            url_input_2.change(get_original_image, url_input_2, url_image_2)
                            
                        with gr.Column():
                            sim_from_url = gr.Label(label='Same Person')
                            dist_from_url = gr.Label(label = 'Distance')
                            thresh_from_url = gr.Label(label = 'Threshold to Verify')
                            model_from_url = gr.Label(label = 'Model Name')
                            metric_from_url = gr.Label(label = 'Similarity Metric')
                            
                            
                    with gr.Row():
                        example_url = gr.Examples(examples=urls,inputs=[url_input_1_fr,url_input_2])
                        
                    url_but_fr = gr.Button('Verify')
                            
                with gr.TabItem("Upload Images"):
                    
                    with gr.Row():
                        with gr.Column():
                            upload_image_1_fr = gr.Image(label='Image 1',shape=(550,550),interactive=True)
                            upload_image_2 = gr.Image(label='Image 2',shape=(550,550),interactive=True)
                        with gr.Column():
                            sim_from_upload = gr.Label(label='Same Person')
                            dist_from_upload = gr.Label(label = 'Distance')
                            thresh_from_upload = gr.Label(label = 'Threshold to Verify')
                            model_from_upload = gr.Label(label = 'Model Name')
                            metric_from_upload = gr.Label(label = 'Similarity Metric')
                            
                    with gr.Row():
                        example_images = gr.Examples(examples =nicks_images,inputs=[upload_image_1_fr,upload_image_2])
                                                    
                    up_but_fr = gr.Button('Verify')          
                
     
        with gr.TabItem('Facial Analysis'):
                
            with gr.Tabs():
                with gr.TabItem("URL Image"):
                    
                    with gr.Row():
                        with gr.Column():
                            url_input_1_fa = gr.Textbox(lines=2,label='Enter valid image URL here..')
                            url_image_1_fa = gr.Image(label='Image 1',shape=(550,550))
                            url_input_1_fa.change(get_original_image, url_input_1_fa, url_image_1_fa)
                            
                            
                        with gr.Column():
                            age_from_url = gr.Label(label='Age')
                            gender_from_url = gr.Label(label = 'Gender')
                            emo_from_url = gr.Label(label = 'Emotion')
                            race_from_url = gr.Label(label = 'Race')
                                     
                    with gr.Row():
                        example_url = gr.Examples(examples=url,inputs=[url_input_1_fa])
                        
                    url_but_fa = gr.Button('Analyze')
                            
                with gr.TabItem("Upload Image"):
                    
                    with gr.Row():
                        with gr.Column():
                            upload_image_1_fa = gr.Image(label='Image 1',shape=(550,550))
                            
                        with gr.Column():
                            age_from_upload = gr.Label(label='Age')
                            gender_from_upload = gr.Label(label = 'Gender')
                            emo_from_upload = gr.Label(label = 'Emotion')
                            race_from_upload = gr.Label(label = 'Race')
                            
                    with gr.Row():
                        example_images = gr.Examples(examples =all_images,inputs=[upload_image_1_fa])
                            
                    up_but_fa = gr.Button('Analyze')
                    
                    
                with gr.TabItem("WebCam Image"):
                    
                    with gr.Row():
                        with gr.Column():
                            web_image = gr.Image(label='WebCam Image',source='webcam',shape=(550,550),streaming=True)
                            
                        with gr.Column():
                            age_from_web = gr.Label(label='Age')
                            gender_from_web = gr.Label(label = 'Gender')
                            emo_from_web = gr.Label(label = 'Emotion')
                            race_from_web = gr.Label(label = 'Race')
                            
                    web_but_fa = gr.Button('Analyze')
            
    url_but_fr.click(face_verification,inputs=[url_image_1_fr,url_image_2,metric_options,model_options,backends_options],\
                     outputs=[sim_from_url,dist_from_url,thresh_from_url,model_from_url,metric_from_url],queue=True)
    up_but_fr.click(face_verification,inputs=[upload_image_1_fr,upload_image_2,metric_options,model_options,backends_options],\
                    outputs=[sim_from_upload,dist_from_upload,thresh_from_upload,model_from_upload,metric_from_upload],queue=True)
    url_but_fa.click(facial_analysis,inputs=[url_image_1_fa,backends_options],\
                     outputs=[age_from_url,gender_from_url,race_from_url,emo_from_url],queue=True)
    up_but_fa.click(facial_analysis,inputs=[upload_image_1_fa,backends_options],\
                    outputs=[age_from_upload,gender_from_upload,race_from_upload,emo_from_upload])
    web_but_fa.click(facial_analysis,inputs=[web_image,backends_options],\
                     outputs=[age_from_web,gender_from_web,race_from_web,emo_from_web])
    

    gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-deepface)")

    
demo.launch(debug=True,enable_queue=True)