Spaces:
Sleeping
Sleeping
File size: 3,460 Bytes
eb957df d3541c5 b92f7ea eb957df 9541538 eb957df 9541538 95325f5 eb957df dd91dc5 eb957df 748c045 eb957df dd91dc5 748c045 dd91dc5 748c045 dd91dc5 748c045 dd91dc5 748c045 dd91dc5 d721842 dd91dc5 748c045 dd91dc5 9541538 eb957df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import os
import gradio as gr
from typing import List, Tuple
from gradio import ChatMessage
import base64
from llama_index.core import StorageContext, load_index_from_storage
from dotenv import load_dotenv
from retrieve import get_latest_dir, get_latest_html_file
from graph_handler import query_graph_qa, plot_subgraph
from embed_handler import query_rag_qa
from evaluate import evaluate_llm, reasoning_graph, get_coupon
import base64
import time
load_dotenv()
KG_INDEX_PATH = get_latest_dir(os.getenv("GRAPH_DIR"))
KG_PLOT_PATH = get_latest_html_file(os.getenv("GRAPH_VIS"))
RAG_INDEX_PATH = get_latest_dir(os.getenv("EMBEDDING_DIR"))
# Load Graph-RAG index
graph_rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=KG_INDEX_PATH)
)
# Load RAG index
rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=RAG_INDEX_PATH)
)
def query_tqa(query, search_level):
"""
Query the Graph-RAG and RAG models for a given query.
Args:
query (str): The query to ask the RAGs.
search_level (int): The max search level to use for the Graph RAG.
Returns:
tuple: The response, reference, and reference text for the Graph-RAG and RAG models.
"""
if not query.strip():
raise gr.Error("Please enter a query before asking.")
grag_response, grag_reference, grag_reference_text = query_graph_qa(
graph_rag_index, query, search_level
)
# rag_response, rag_reference, rag_reference_text = query_rag_qa(
# rag_index, query, search_level
# )
print(str(grag_response.response))
return (
str(grag_response.response)
)
# with gr.Blocks() as demo:
# gr.Markdown("# Comfy Virtual Assistant")
# chatbot = gr.Chatbot(
# label="Comfy Virtual Assistant",
# type="messages",
# scale=1,
# # suggestions = [
# # {"text": "How much iphone cost?"},
# # {"text": "What phone options do i have ?"}
# # ],
# )
# msg = gr.Textbox(label="Input Your Query")
# clear = gr.ClearButton([msg, chatbot])
# def respond(message, chat_history):
# bot_message = query_tqa(message, 2)
# # chat_history.append((message, bot_message))
# chat_history.append(ChatMessage(role="user", content=message))
# chat_history.append(ChatMessage(role="assistant", content=bot_message))
# time.sleep(1)
# return "", chat_history
# msg.submit(respond, [msg, chatbot], [msg, chatbot])
def chatbot_response(message: str, history: List[Tuple[str, str]]) -> str:
# Use the query_tqa function to get the response
search_level = 2 # You can adjust this or make it configurable
response = query_tqa(message, search_level)
return response
# Create the Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
bot_message = chatbot_response(history[-1][0], history)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(auth=(os.getenv("ID"), os.getenv("PASS")), share=False)
|