rknl commited on
Commit
95325f5
·
verified ·
1 Parent(s): d66a7b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -155
app.py CHANGED
@@ -49,6 +49,7 @@ def query_tqa(query, search_level):
49
  # rag_response, rag_reference, rag_reference_text = query_rag_qa(
50
  # rag_index, query, search_level
51
  # )
 
52
  return (
53
  str(grag_response.response),
54
  # grag_reference,
@@ -59,52 +60,6 @@ def query_tqa(query, search_level):
59
  )
60
 
61
 
62
- # def eval_llm(query, rag_response, grag_response):
63
- # """
64
- # Evaluate the Graph-RAG and RAG responses using an LLM.
65
-
66
- # Args:
67
- # query (str): The query that was asked.
68
- # rag_response (str): The response from the Vanilla-RAG model.
69
- # grag_response (str): The response from the Graph-RAG model.
70
-
71
- # Returns:
72
- # str: The evaluation text on various criteria from the LLM.
73
- # """
74
-
75
- # if not query.strip() or not rag_response.strip() or not grag_response.strip():
76
- # raise gr.Error("Please ask a query and get responses before evaluating.")
77
-
78
- # eval_text = evaluate_llm(query, grag_response, rag_response)
79
- # return eval_text
80
-
81
-
82
- # def reason_and_plot(query, grag_response, grag_reference):
83
- # """
84
- # Get the reasoning graph for a query and plot the knowledge graph.
85
-
86
- # Args:
87
- # query (str): The query to ask the Graph-RAG.
88
- # grag_response (str): The response from the Graph-RAG model.
89
- # grag_reference (str): The reference text from the Graph-RAG model.
90
-
91
- # Returns:
92
- # tuple: The reasoning graph and the HTML to plot the knowledge graph.
93
- # """
94
-
95
- # if not query.strip() or not grag_response.strip() or not grag_reference.strip():
96
- # raise gr.Error(
97
- # "Please ask a query and get a Graph-RAG response before reasoning."
98
- # )
99
-
100
- # graph_reasoning = reasoning_graph(query, grag_response, grag_reference)
101
- # escaped_html = plot_subgraph(grag_reference)
102
-
103
- # iframe_html = f'<iframe srcdoc="{escaped_html}" width="100%" height="400px" frameborder="0"></iframe>'
104
-
105
- # return graph_reasoning, iframe_html
106
-
107
-
108
  def show_graph():
109
  """
110
  Show the latest graph visualization in an iframe.
@@ -147,13 +102,7 @@ def reveal_coupon(query, grag_response):
147
  coupon = get_coupon(query, grag_response)
148
  return coupon
149
 
150
- # from gradio import ChatMessage
151
-
152
- # def chat_function(message, history):
153
- # history.append(ChatMessage(role="user", content=message))
154
- # history.append(ChatMessage(role="assistant", content="Hello, how can I help you?"))
155
- # return history
156
-
157
  with gr.Blocks() as demo:
158
  gr.Markdown("# Comfy Virtual Assistant")
159
  chatbot = gr.Chatbot(
@@ -178,106 +127,5 @@ with gr.Blocks() as demo:
178
  return "", chat_history
179
 
180
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
181
-
182
- # with gr.Row():
183
- # with gr.Column(scale=4):
184
- # query_input = gr.Textbox(label="Input Your Query", lines=3)
185
- # # with gr.Column(scale=1):
186
- # # search_level = gr.Slider(
187
- # # minimum=1, maximum=50, value=3, step=5, label="Search Level"
188
- # # )
189
- # ask_button = gr.Button("Ask Comfy", variant="primary")
190
-
191
- # examples = gr.Examples(
192
- # examples=[
193
- # ["Recommend me an apple phone that has more than 10MP camera."],
194
- # ["What is the price of Samsung Galaxy S24 Ultra 12/256Gb Titanium Gray"],
195
- # ["I want a phone with 5000 mAH or more battery"],
196
- # ],
197
- # inputs=[query_input],
198
- # )
199
-
200
- # with gr.Row():
201
- # with gr.Column():
202
- # gr.Markdown("### Graph-RAG")
203
- # grag_output = gr.Textbox(label="Response", lines=5)
204
- # grag_reference = gr.Textbox(label="Triplets", lines=3)
205
- # with gr.Accordion("Extracted Reference (Raw)", open=False):
206
- # grag_reference_text = gr.Textbox(label="Raw Reference", lines=5)
207
-
208
- # with gr.Column():
209
- # gr.Markdown("### Vanilla RAG")
210
- # rag_output = gr.Textbox(label="Response", lines=5)
211
- # rag_reference = gr.Textbox(label="Extracted Reference", lines=3)
212
- # with gr.Accordion("Extracted Reference (Raw)", open=False):
213
- # rag_reference_text = gr.Textbox(label="Raw Reference", lines=5)
214
-
215
- # gr.Markdown("### Coupon")
216
- # with gr.Row():
217
- # with gr.Column():
218
- # coupon = gr.Text(label="Coupon", lines=1)
219
- # with gr.Column():
220
- # reveal = gr.Button("Reveal Coupon", variant="secondary")
221
-
222
- # with gr.Row():
223
- # gr.Markdown("### Evaluate and Compare")
224
-
225
- # with gr.Row():
226
- # eval_button = gr.Button("Evaluate LLMs", variant="secondary")
227
-
228
- # grag_performance = gr.Textbox(label="Evaluation", lines=3)
229
-
230
- # with gr.Row():
231
- # gr.Markdown("### Graph Reasoning")
232
-
233
- # with gr.Row():
234
- # reason_button = gr.Button("Get Graph Reasoning", variant="secondary")
235
-
236
- # with gr.Row():
237
- # with gr.Column():
238
- # grag_reasoning = gr.Textbox(label="Graph-RAG Reasoning", lines=5)
239
- # with gr.Column():
240
- # subgraph_plot = gr.HTML()
241
-
242
- # with gr.Row():
243
- # plot_button = gr.Button("Plot Knowledge Graph", variant="secondary")
244
-
245
- # kg_output = gr.HTML()
246
-
247
- # ask_button.click(
248
- # query_tqa,
249
- # inputs=[query_input, search_level],
250
- # outputs=[
251
- # grag_output,
252
- # # grag_reference,
253
- # # grag_reference_text,
254
- # # rag_output,
255
- # # rag_reference,
256
- # # rag_reference_text,
257
- # ],
258
- # )
259
-
260
- # eval_button.click(
261
- # eval_llm,
262
- # inputs=[query_input, rag_output, grag_output],
263
- # outputs=[grag_performance],
264
- # )
265
-
266
- # reason_button.click(
267
- # reason_and_plot,
268
- # inputs=[query_input, grag_output, grag_reference],
269
- # outputs=[grag_reasoning, subgraph_plot],
270
- # )
271
-
272
- # plot_button.click(
273
- # show_graph,
274
- # outputs=[kg_output],
275
- # )
276
-
277
- # reveal.click(
278
- # reveal_coupon,
279
- # inputs=[query_input, grag_output],
280
- # outputs=[coupon],
281
- # )
282
-
283
  demo.launch(auth=(os.getenv("ID"), os.getenv("PASS")), share=False)
 
49
  # rag_response, rag_reference, rag_reference_text = query_rag_qa(
50
  # rag_index, query, search_level
51
  # )
52
+ print(str(grag_response.response))
53
  return (
54
  str(grag_response.response),
55
  # grag_reference,
 
60
  )
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def show_graph():
64
  """
65
  Show the latest graph visualization in an iframe.
 
102
  coupon = get_coupon(query, grag_response)
103
  return coupon
104
 
105
+
 
 
 
 
 
 
106
  with gr.Blocks() as demo:
107
  gr.Markdown("# Comfy Virtual Assistant")
108
  chatbot = gr.Chatbot(
 
127
  return "", chat_history
128
 
129
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
130
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  demo.launch(auth=(os.getenv("ID"), os.getenv("PASS")), share=False)