Spaces:
Sleeping
Sleeping
File size: 7,099 Bytes
1997c01 d189e4c 1997c01 edc370b 1997c01 6866b1f a4d5793 83cd13d d8e3d53 6400777 dc4b91d a4d5793 d8e3d53 0b6419d d8e3d53 0b6419d d8e3d53 c024d74 a4d5793 e517d5e a4d5793 f83432c 10608aa 0391643 10608aa 4dcad40 10608aa 0391643 850974d 0391643 850974d 0391643 9c17797 0391643 e517d5e 68e8a9a d8e3d53 cba8adc 83cd13d 68e8a9a 3b7be5c 68e8a9a cba8adc c024d74 0391643 f83432c a07c0ed f83432c 0391643 f83432c cd11506 0391643 cd11506 b65f10f f83432c cd11506 f83432c cd11506 34833f4 cd11506 25d3bcd 4281a78 34833f4 196214b cd11506 f83432c a07c0ed f83432c 0391643 0c12c76 f83432c 24becb3 c6a5618 1997c01 c6a5618 9c17797 1997c01 83cd13d 19ae57e 1997c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# Accessing input data
matrix = inputs['input']["matrix"]
landuses = inputs['input']["landuse_areas"]
attributeMapperDict = inputs['input']["attributeMapperDict"]
landuseMapperDict = inputs['input']["landuseMapperDict"]
alpha = inputs['input']["alpha"]
alpha = float(alpha)
threshold = inputs['input']["threshold"]
threshold = float(threshold)
df_matrix = pd.DataFrame(matrix).T
df_landuses = pd.DataFrame(landuses).T
df_matrix = df_matrix.round(0).astype(int)
df_landuses = df_landuses.round(0).astype(int)
"""
if len(A) == len(B):
B.index = A
else:
print("The lengths do not match.")
"""
# create a mask based on the matrix size and ids, crop activity nodes to the mask
mask_connected = df_matrix.index.tolist()
valid_indexes = [idx for idx in mask_connected if idx in df_landuses.index]
# Identify and report missing indexes
missing_indexes = set(mask_connected) - set(valid_indexes)
if missing_indexes:
print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}")
# Apply the filtered mask
df_landuses_filtered = df_landuses.loc[valid_indexes]
# find a set of unique domains, to which subdomains are aggregated
temp = []
for key, values in attributeMapperDict.items():
domain = attributeMapperDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
attributeMapperDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
# find a list of unique subdomains, to which land uses are aggregated
temp = []
for key, values in landuseMapperDict.items():
subdomain = str(landuseMapperDict[key])
if subdomain != 0:
temp.append(subdomain)
subdomainsUnique = list(set(temp))
def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList):
df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList)
for subdomain in UniqueSubdomainsList:
for lu, lu_subdomain in LanduseToSubdomainDict.items():
if lu_subdomain == subdomain:
if lu in LanduseDf.columns:
df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0)
else:
print(f"Warning: Column '{lu}' not found in landuse database")
return df_LivabilitySubdomainsArea
LivabilitySubdomainsWeights = landusesToSubdomains(df_matrix,df_landuses_filtered,landuseMapperDict,subdomainsUnique)
# make a dictionary to output in grasshopper / etc
LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index')
def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=weightsNames) #destinationWeights.columns)
# for weighted accessibility (e. g. areas)
if not destinationWeights.empty:
for col,columnName in zip(destinationWeights.columns, weightsNames):
subdomainsAccessibility[columnName] = (decay_factors * destinationWeights[col].values).sum(axis=1)
# for unweighted accessibility (e. g. points of interest)
else:
for columnName in weightsNames:
subdomainsAccessibility[columnName] = (decay_factors * 1).sum(axis=1)
return subdomainsAccessibility
subdomainsAccessibility = computeAccessibility(df_matrix,subdomainsUnique,LivabilitySubdomainsWeights,alpha,threshold)
# make a dictionary to output in grasshopper / etc
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict,UniqueDomainsList):
livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
livability.fillna(0, inplace=True)
for domain in UniqueDomainsList:
livability[domain] = 0
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
if key in subdomainsAccessibility.columns:
domain = [str(item) for item in SubdomainAttributeDict[key]['domain']]
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
sqm_per_employee = SubdomainAttributeDict[key]['sqmPerEmpl']
livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
if any(domain):
for item in domain:
livability.loc[subdomainsAccessibility[key] >= threshold, item] += max_livability
livability.loc[subdomainsAccessibility[key] < threshold, item] += livability_score
return livability
livability = accessibilityToLivability(df_matrix,subdomainsAccessibility,attributeMapperDict,domainsUnique)
livability_dictionary = livability.to_dict('index')
#columnList = domainsUnique+subdomainsUnique
# Prepare the output
output = {
"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
"livability_dictionary": livability_dictionary,
"subdomainsArea_dictionary": LivabilitySubdomainsWeights_dictionary
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch() |