nastasiasnk commited on
Commit
cd11506
1 Parent(s): aebe9d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -40
app.py CHANGED
@@ -62,49 +62,49 @@ def test(input_json):
62
 
63
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
64
 
65
- livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
66
- livability.fillna(0, inplace=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- # find a set of unique domains, to which subdomains are aggregated
69
 
70
- temp = []
71
-
72
- for key, values in SubdomainAttributeDict.items():
73
- domain = SubdomainAttributeDict[key]['domain']
74
- for item in domain:
75
- if ',' in item:
76
- domain_list = item.split(',')
77
- SubdomainAttributeDict[key]['domain'] = domain_list
78
- for domain in domain_list:
79
- temp.append(domain)
80
- else:
81
- if item != 0:
82
- temp.append(item)
83
-
84
- domainsUnique = list(set(temp))
85
-
86
- for domain in domainsUnique:
87
- livability[domain] = 0
88
-
89
-
90
- # remap accessibility to livability points
91
-
92
- for key, values in SubdomainAttributeDict.items():
93
- threshold = float(SubdomainAttributeDict[key]['thresholds'])
94
- max_livability = float(SubdomainAttributeDict[key]['max_points'])
95
- domain = SubdomainAttributeDict[key]['domain']
96
- sqm_per_employee = str(SubdomainAttributeDict[key]['sqmPerEmpl'])
97
-
98
- if key in subdomainsAccessibility.columns:
99
- livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
100
- livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
101
- livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
102
- if any(domain):
103
- for item in domain:
104
- livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability
105
- livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score
106
 
107
- return livability
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
 
110
 
 
62
 
63
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
64
 
65
+ livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
66
+ livability.fillna(0, inplace=True)
67
+
68
+ # find a set of unique domains, to which subdomains are aggregated
69
+
70
+ temp = []
71
+
72
+ for key, values in SubdomainAttributeDict.items():
73
+ domain = SubdomainAttributeDict[key]['domain']
74
+ for item in domain:
75
+ if ',' in item:
76
+ domain_list = item.split(',')
77
+ SubdomainAttributeDict[key]['domain'] = domain_list
78
+ for domain in domain_list:
79
+ temp.append(domain)
80
+ else:
81
+ if item != 0:
82
+ temp.append(item)
83
+
84
+ domainsUnique = list(set(temp))
85
+
86
+ for domain in domainsUnique:
87
+ livability[domain] = 0
88
 
 
89
 
90
+ # remap accessibility to livability points
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ for key, values in SubdomainAttributeDict.items():
93
+ threshold = float(SubdomainAttributeDict[key]['thresholds'])
94
+ max_livability = float(SubdomainAttributeDict[key]['max_points'])
95
+ domain = SubdomainAttributeDict[key]['domain']
96
+ sqm_per_employee = str(SubdomainAttributeDict[key]['sqmPerEmpl'])
97
+
98
+ if key in subdomainsAccessibility.columns:
99
+ livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
100
+ livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
101
+ livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
102
+ if any(domain):
103
+ for item in domain:
104
+ livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability
105
+ livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score
106
+
107
+ return livability
108
 
109
 
110