Spaces:
Runtime error
Runtime error
File size: 19,003 Bytes
208053f 15f5208 208053f 15f5208 d27fe32 208053f 15f5208 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f 15f5208 208053f 15f5208 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f 15f5208 d27fe32 15f5208 208053f d27fe32 208053f d27fe32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
import csv
import json
import logging
import multiprocessing as mp
import os
import re
import string
import sys
import unicodedata
from typing import Any, Dict, List, NewType, Optional, Union
import numpy as np
import yaml
from datasets import Dataset, load_dataset
from easygoogletranslate import EasyGoogleTranslate
from evaluate import load
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from tqdm import tqdm
from yaml.loader import SafeLoader
XQUAD_LANG2CODES = {
"bengali": "bn",
"korean": "ko",
"swahili": "sw",
"english": "en",
"indonesian": "id",
"arabic": "ar",
"finnish": "fi",
"telugu": "te",
"russian": "ru",
"german": "de",
"greek": "el",
"hindi": "hi",
"vietnamese": "vi",
"romanian": "ro",
}
INDICQA_LANG2CODES = {
"indicqa": "as",
"bengali": "bn",
"gujarati": "gu",
"hindi": "hi",
"kannada": "kn",
"malayalam": "ml",
"marathi": "mr",
"odia": "or",
"punjabi": "pa",
"tamil": "ta",
"telugu": "te",
"assamese": "as",
}
PUNCT = {
chr(i)
for i in range(sys.maxunicode)
if unicodedata.category(chr(i)).startswith("P")
}.union(string.punctuation)
WHITESPACE_LANGS = ["en", "es", "hi", "vi", "de", "ar"]
MIXED_SEGMENTATION_LANGS = ["zh"]
TYDIQA_LANG2CODES = {
"bengali": "bn",
"korean": "ko",
"swahili": "sw",
"english": "en",
"indonesian": "id",
"arabic": "ar",
"finnish": "fi",
"telugu": "te",
"russian": "ru",
"assamese": "as",
"persian": "fa",
}
logger = logging.Logger("Xlsum_task")
LANGUAGE_TO_SUFFIX = {
"chinese_simplified": "zh-CN",
"french": "fr",
"portuguese": "pt",
"english": "en",
"arabic": "ar",
"hindi": "hi",
"indonesian": "id",
"amharic": "am",
"bengali": "bn",
"burmese": "my",
"uzbek": "uz",
"nepali": "ne",
"japanese": "ja",
"spanish": "es",
"turkish": "tr",
"persian": "fa",
"azerbaijani": "az",
"korean": "ko",
"hebrew": "he",
"telugu": "te",
"german": "de",
"greek": "el",
"tamil": "ta",
"assamese": "as",
"vietnamese": "vi",
"russian": "ru",
"romanian": "ro",
"malayalam": "ml",
"swahili": "sw",
"bulgarian": "bg",
"thai": "th",
"urdu": "ur",
"italian": "it",
"polish": "pl",
"dutch": "nl",
"swedish": "sv",
"danish": "da",
"norwegian": "no",
"finnish": "fi",
"hungarian": "hu",
"czech": "cs",
"slovak": "sk",
"ukrainian": "uk",
}
PARAMS = NewType("PARAMS", Dict[str, Any])
def read_parameters(args_path) -> PARAMS:
with open(args_path) as f:
args = yaml.load(f, Loader=SafeLoader)
return args
def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
if dataset_name == "indicqa":
if split != "train":
dataset = load_dataset(
"ai4bharat/IndicQA", f"indicqa.{INDICQA_LANG2CODES[lang]}"
)[split]
else:
dataset = load_dataset("squad_v2")[split]
elif dataset_name == "xquad":
if split != "train":
dataset = load_dataset("xquad", f"xquad.{XQUAD_LANG2CODES[lang]}")[
"validation"
]
else:
dataset = load_dataset("squad")[split]
elif dataset_name == "tydiqa":
dataset = load_dataset("tydiqa", "secondary_task")[split]
dataset = dataset.map(
lambda example: {"lang": TYDIQA_LANG2CODES[example["id"].split("-")[0]]}
)
dataset = dataset.filter(lambda example: example["lang"] == lang)
elif dataset_name == "mlqa":
if split == "train":
print("No Training Data for MLQA, switching to validation!")
split = "validation"
if translate_test:
dataset_name = f"mlqa-translate-test.{lang}"
else:
dataset_name = f"mlqa.{lang}.{lang}"
dataset = load_dataset("mlqa", dataset_name)[split]
else:
raise NotImplementedError()
return dataset.select(np.arange(limit))
def construct_prompt(
instruction: str,
test_example: dict,
ic_examples: List[dict],
zero_shot: bool,
lang: str,
config: Any,
):
example_prompt = PromptTemplate(
input_variables=["context", "question", "answers"],
template="Context: {context} \n Question: {question} \n "
"Answers: {answers}",
)
zero_shot_template = (
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
)
prompt = (
FewShotPromptTemplate(
examples=ic_examples,
prefix=instruction,
example_prompt=example_prompt,
suffix="<Context>: {context} \n <Question>: {question} \n Answers: ?",
input_variables=["question", "context"],
)
if not zero_shot
else PromptTemplate(
input_variables=["question", "context"], template=zero_shot_template
)
)
label = test_example["answers"]
if config["input"] != lang:
test_example = _translate_example(
example=test_example, src_language=lang, target_language=config["input"]
)
return (
prompt.format(
question=test_example["question"], context=test_example["context"]
),
label,
)
def dump_metrics(
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
):
# Check if the metric logger file exists
file_exists = os.path.exists(metric_logger_path)
# Open the CSV file in append mode
with open(metric_logger_path, "a", newline="") as f:
csvwriter = csv.writer(f, delimiter=",")
# Write header row if the file is newly created
if not file_exists:
header = ["Language", "Prefix", "Input", "Context", "Output", "F1", "Em"]
csvwriter.writerow(header)
csvwriter.writerow(
[
lang,
config["prefix"],
config["input"],
config["context"][0],
config["output"],
f1,
em,
]
)
def dump_predictions(idx, response, label, response_logger_file):
obj = {"q_idx": idx, "prediction": response, "label": label}
with open(response_logger_file, "a") as f:
f.write(json.dumps(obj, ensure_ascii=False) + " \n ")
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
translator = EasyGoogleTranslate(
source_language="en",
target_language=LANGUAGE_TO_SUFFIX[target_language],
timeout=50,
)
return translator.translate(basic_instruction)
def _translate_prediction_to_output_language(
prediction: str, prediction_language: str, output_language: str
) -> str:
translator = EasyGoogleTranslate(
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
target_language=LANGUAGE_TO_SUFFIX[output_language],
timeout=10,
)
return translator.translate(prediction)
def create_instruction(lang: str, instruction_language: str, expected_output):
basic_instruction = (
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions: \n "
"1. The answer should include only words from the given context \n "
"2. The answer must include up to 5 words \n "
"3. The answer Should be the shortest as possible \n "
f"4. The answer must be in {expected_output} only!, not another language!!!"
)
return (
basic_instruction
if instruction_language == "english"
else _translate_instruction(basic_instruction, target_language=lang)
)
def _translate_example(
example: Dict[str, str], src_language: str, target_language: str
):
translator = EasyGoogleTranslate(
source_language=LANGUAGE_TO_SUFFIX[src_language],
target_language=LANGUAGE_TO_SUFFIX[target_language],
timeout=30,
)
try:
return {
"question": translator.translate(example["question"]),
"context": translator.translate(example["context"][:2000])
+ translator.translate(example["context"][2000:4000])
+ translator.translate(example["context"][4000:6000]),
"answers": "",
}
except Exception as e:
pass
def choose_few_shot_examples(
train_dataset: Dataset,
few_shot_size: int,
context: List[str],
selection_criteria: str,
lang: str,
) -> List[Dict[str, Union[str, int]]]:
"""Selects few-shot examples from training datasets
Args:
train_dataset (Dataset): Training Dataset
few_shot_size (int): Number of few-shot examples
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
Returns:
List[Dict[str, Union[str, int]]]: Selected examples
"""
selected_examples = []
example_idxs = []
if selection_criteria == "first_k":
example_idxs = list(range(few_shot_size))
elif selection_criteria == "random":
example_idxs = (
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
.astype(int)
.tolist()
)
ic_examples = [
{
"question": train_dataset[idx]["question"],
"context": train_dataset[idx]["context"],
"answers": train_dataset[idx]["answers"]["text"],
}
for idx in example_idxs
]
for idx, ic_language in enumerate(context):
(
selected_examples.append(ic_examples[idx])
if ic_language == lang
else (
selected_examples.append(
_translate_example(
example=ic_examples[idx],
src_language=lang,
target_language=ic_language,
)
)
)
)
return selected_examples
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(PUNCT) # set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def process_test_example(
test_data, config_header, idx, test_example, config, zero_shot, lang, params
):
try:
# Your existing code for processing each test example
instruction = create_instruction(
lang=config["prefix"], expected_output=config["output"]
)
text_example = {
"question": test_example["question"],
"context": test_example["context"],
"answers": test_example["answers"]["text"],
}
ic_examples = []
if not zero_shot:
ic_examples = choose_few_shot_examples(
train_dataset=test_data,
few_shot_size=len(config["context"]),
context=config["context"],
selection_criteria="random",
lang=params["selected_language"],
)
prompt, label = construct_prompt(
instruction=instruction,
test_example=text_example,
ic_examples=ic_examples,
zero_shot=zero_shot,
lang=lang,
config=config,
)
print(len(prompt))
pred = get_prediction(
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
)
# pred = mixtral_completion(prompt)
print(pred)
logger.info("Saving prediction to persistent volume")
os.makedirs(
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
)
dump_predictions(
idx=idx,
response=pred,
label=label,
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
)
except Exception as e:
# Handle exceptions here
print(f"Error processing example {idx}: {e}")
def run_one_configuration(params: Optional[PARAMS] = None):
if not params:
params = read_parameters("../../parameters.yaml")
lang = params["selected_language"]
config = params["config"]
zero_shot = len(config["context"]) == 0
rouge1, rouge2, rougeL, normalized_ic_examples, batched_predictions = (
[],
[],
[],
[],
[],
)
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}_{config['output']}"
dataset_name = params["dataset_name"]
squad_metric = load("squad")
metric = params["metric"]
f1_sum = 0
em_sum = 0
avg_em = 0
avg_f1 = 0
preds = []
labels = []
f1s, ems = [], []
test_data = load_qa_dataset(
dataset_name=params["dataset_name"],
lang=lang,
split="validation" if params["dataset_name"] == "xquad" else "test",
limit=params["limit"],
)
for idx, test_example in (pbar := tqdm(enumerate(test_data))):
try:
instruction = create_instruction(
lang=config["prefix"], expected_output=config["output"]
)
text_example = {
"question": test_example["question"],
"context": test_example["context"],
"answers": test_example["answers"]["text"],
}
ic_examples = []
if not zero_shot:
ic_examples = choose_few_shot_examples(
train_dataset=test_data,
few_shot_size=len(config["context"]),
context=config["context"],
selection_criteria="random",
lang=params["selected_language"],
)
prompt, label = construct_prompt(
instruction=instruction,
test_example=text_example,
ic_examples=ic_examples,
zero_shot=zero_shot,
lang=lang,
config=config,
)
pred = mt0_completion(prompt=prompt)
print(pred)
logger.info("Saving prediction to persistent volume")
os.makedirs(
f"{params['response_logger_root']}" + f"{params['model']}" + f"/{lang}",
exist_ok=True,
)
dump_predictions(
idx=idx,
response=pred,
label=label,
response_logger_file=f"{params['response_logger_root']}"
+ f"/{params['model']}"
+ f"/{lang}/"
+ config_header
+ ".csv",
)
except Exception as e:
print(f"Found an exception {e}, continue to the next example")
continue
os.makedirs(f"{params['metrics_root']}" + f"/{params['model']}", exist_ok=True)
dump_metrics(
lang,
config,
avg_f1,
avg_em,
f"{params['metrics_root']}" + f"/{params['model']}" + f"/{lang}.csv",
)
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
if not params:
params = read_parameters("../../parameters.yaml")
lang = params["selected_language"]
config = params["config"]
zero_shot = len(config["context"]) == 0
rouge1, rouge2, rougeL, normalized_ic_examples, batched_predictions = (
[],
[],
[],
[],
[],
)
if not zero:
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}_{config['output']}"
else:
config_header = f"{config['input']}_{config['prefix']}_zero_{config['output']}"
test_data = load_qa_dataset(
dataset_name=params["dataset_name"],
lang=lang,
split="validation" if params["dataset_name"] == "xquad" else "test",
limit=params["limit"],
)
# Initialize multiprocessing poosl
num_processes = mp.cpu_count() # Use number of available CPU cores
pool = mp.Pool(processes=10)
# Iterate over test_data using tqdm for progress tracking
for idx, test_example in tqdm(enumerate(test_data), total=len(test_data)):
# Apply asynchronous processing of each test example
pool.apply_async(
process_test_example,
args=(
test_data,
config_header,
idx,
test_example,
config,
zero_shot,
lang,
params,
),
)
# Close the pool and wait for all processes to finish
pool.close()
pool.join()
def construct_prompt(
instruction: str,
test_example: dict,
zero_shot: bool,
num_examples: int,
lang: str,
config: Dict[str, str],
dataset_name: str = "xquad",
):
if not instruction:
instruction = create_instruction(lang, config["prefix"], config["output"])
example_prompt = PromptTemplate(
input_variables=["context", "question", "answers"],
template="Context: {context} \n Question: {question} \n " "Answers: {answers}",
)
zero_shot_template = (
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
)
if not zero_shot:
try:
test_data = load_qa_dataset(
dataset_name=dataset_name, lang=lang, split="test", limit=100
)
except Exception as e:
raise KeyError(f"{lang} is not supported in {dataset_name}")
ic_examples = []
if not zero_shot:
ic_examples = choose_few_shot_examples(
train_dataset=test_data,
few_shot_size=num_examples,
context=[config["context"]] * num_examples,
selection_criteria="random",
lang=lang,
)
prompt = (
FewShotPromptTemplate(
examples=ic_examples,
prefix=instruction,
example_prompt=example_prompt,
suffix="<Context>: {context} \n <Question>: {question} \n Answers: ?",
input_variables=["question", "context"],
)
if not zero_shot
else PromptTemplate(
input_variables=["question", "context"], template=zero_shot_template
)
)
print("lang", lang)
print(config["input"], lang)
if config["input"] != lang:
test_example = _translate_example(
example=test_example, src_language=lang, target_language=config["input"]
)
return prompt.format(
question=test_example["question"], context=test_example["context"]
)
|