Spaces:
Runtime error
Runtime error
Anonymous
commited on
Commit
•
208053f
1
Parent(s):
f18411b
add files
Browse files- app.py +211 -0
- generate_prompt.py +642 -0
- tasks/ner.py +132 -0
- tasks/nli.py +496 -0
- tasks/qa.py +770 -0
- tasks/summarization.py +149 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from openai import OpenAI
|
4 |
+
from generate_prompt import construct_generic_prompt, recommend_config
|
5 |
+
|
6 |
+
# Define available tasks and their corresponding datasets
|
7 |
+
|
8 |
+
QA = "QA"
|
9 |
+
SUMMARIZATION = "Summarization"
|
10 |
+
NLI = "NLI"
|
11 |
+
NER = "NER"
|
12 |
+
|
13 |
+
tasks_datasets = {
|
14 |
+
QA: ["XQuad", "Indicqa"],
|
15 |
+
SUMMARIZATION: ["XLSum", "HeSum"],
|
16 |
+
NLI: ["XNLI"],
|
17 |
+
NER: ["MasakaNER", "WikiANN"]
|
18 |
+
}
|
19 |
+
|
20 |
+
# List of all languages
|
21 |
+
languages = [
|
22 |
+
"English", "Spanish", "French", "German", "Chinese", "Japanese", "Korean", "Italian",
|
23 |
+
"Portuguese", "Russian", "Arabic", "Hindi", "Bengali", "Turkish", "Vietnamese", "Polish",
|
24 |
+
"Dutch", "Indonesian", "Malay", "Thai", "Greek", "Swedish", "Hungarian", "Finnish",
|
25 |
+
"Danish", "Norwegian", "Hebrew", "Czech", "Slovak", "Bulgarian", "Romanian", "Serbian",
|
26 |
+
"Croatian", "Ukrainian", "Lithuanian", "Latvian", "Estonian", "Filipino", "Icelandic",
|
27 |
+
"Irish", "Welsh", "Maltese", "Swahili", "Zulu", "Afrikaans"
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def get_datasets(task):
|
33 |
+
return tasks_datasets.get(task, [])
|
34 |
+
|
35 |
+
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
with gr.Row():
|
38 |
+
gr.Markdown("## Multilingual Prompt Generator")
|
39 |
+
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column(scale=2):
|
42 |
+
instruction = gr.Textbox(label="Instruction")
|
43 |
+
openai_key = gr.Textbox(label="OpenAI API key", type="password")
|
44 |
+
model = gr.Textbox(label="Model", placeholder="Enter model name (e.g., gpt-4-vision-preview)")
|
45 |
+
model_type = gr.Dropdown(label="Model Type", choices=["Multilingual", "English"], value='English')
|
46 |
+
config_recommendation = gr.Button("Recommend Configuration")
|
47 |
+
with gr.Column():
|
48 |
+
task = gr.Dropdown(label="Task", choices=list(tasks_datasets.keys()), value=QA)
|
49 |
+
language = gr.Dropdown(label="Source Language", choices=languages, value="English")
|
50 |
+
zero_shot = gr.Checkbox(label="Zero-shot", value=False)
|
51 |
+
with gr.Accordion("Prompt Configuration Selection", open=False):
|
52 |
+
prefix_selection = gr.Dropdown(["English", "Source"], label="prefix", value='English')
|
53 |
+
context_selection = gr.Dropdown(["English", "Source"], label="context", value='English')
|
54 |
+
examples_selection = gr.Dropdown(["English", "Source"], label="examples" , value='English')
|
55 |
+
output_selection = gr.Dropdown(["English", "Source"], label="output", value='English')
|
56 |
+
with gr.Accordion("Few Shot - Select Type of Examples ", open=False, visible=True) as few_shot:
|
57 |
+
dataset = gr.Dropdown(label="Dataset", choices=tasks_datasets[QA], value="XlSum")
|
58 |
+
num_examples = gr.Slider(label="Number of examples in context", minimum=1, maximum=10, step=1, value=3)
|
59 |
+
with gr.Row():
|
60 |
+
question = gr.Textbox(label="Question", visible=True)
|
61 |
+
context = gr.Textbox(label="Context", visible=True)
|
62 |
+
text = gr.Textbox(label="Text", visible=False)
|
63 |
+
sentence = gr.Textbox(label="Sentence", visible=False)
|
64 |
+
hypothesis = gr.Textbox(label="Hypothesis", visible=False)
|
65 |
+
premise = gr.Textbox(label="Premise", visible=False)
|
66 |
+
with gr.Row():
|
67 |
+
config_prompt = gr.Textbox(label="Recommended Configuration", interactive=False,
|
68 |
+
placeholder="Recommended Configuration for this scenerio")
|
69 |
+
|
70 |
+
generate_button = gr.Button("Generate Prompt")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
prompt = gr.Textbox(label="Generated Prompt", interactive=False, placeholder="Generated prompt will appear here.")
|
74 |
+
|
75 |
+
|
76 |
+
def update_datasets(selected_task):
|
77 |
+
return gr.Dropdown(choices=get_datasets(selected_task))
|
78 |
+
|
79 |
+
|
80 |
+
def toggle_task_inputs(selected_task):
|
81 |
+
if selected_task == QA:
|
82 |
+
return (
|
83 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=False),
|
84 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
85 |
+
)
|
86 |
+
elif selected_task == SUMMARIZATION:
|
87 |
+
return (
|
88 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
|
89 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
90 |
+
)
|
91 |
+
elif selected_task == NER:
|
92 |
+
return (
|
93 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
94 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
return (
|
98 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
99 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def toggle_num_examples(zero_shot_value):
|
104 |
+
# If zero_shot is True, hide the num_examples slider
|
105 |
+
return gr.update(visible=not zero_shot_value)
|
106 |
+
|
107 |
+
def update_language_selection(language):
|
108 |
+
return gr.update(choices=list({'English', language})), gr.update(choices=list({'English', language})), gr.update(choices=list({'English', language})), gr.update(choices=list({'English', language}))
|
109 |
+
|
110 |
+
def generatePrompt(instruction, num_examples, zero_shot,
|
111 |
+
task, selected_language, dataset, prefix_selection, context_selection, examples_selection, output_selection,
|
112 |
+
text, question, context, sentence, hypothesis, premise):
|
113 |
+
|
114 |
+
config = {'prefix': str.lower(prefix_selection), 'input': str.lower(context_selection), 'context': str.lower(examples_selection), 'output': str.lower(output_selection)}
|
115 |
+
|
116 |
+
if task == QA:
|
117 |
+
text_example = {
|
118 |
+
'context': context,
|
119 |
+
'question': question,
|
120 |
+
}
|
121 |
+
elif task == SUMMARIZATION:
|
122 |
+
text_example = {
|
123 |
+
'text': text,
|
124 |
+
}
|
125 |
+
elif task == NER:
|
126 |
+
text_example = {
|
127 |
+
'tokens': sentence,
|
128 |
+
}
|
129 |
+
else:
|
130 |
+
text_example = {
|
131 |
+
'hypothesis': hypothesis,
|
132 |
+
'premise': premise
|
133 |
+
}
|
134 |
+
|
135 |
+
print(text_example)
|
136 |
+
prompt = construct_generic_prompt(task, instruction, text_example, zero_shot, num_examples, selected_language, dataset, config)
|
137 |
+
|
138 |
+
return prompt
|
139 |
+
|
140 |
+
|
141 |
+
def respond(message, openai_key, url, chat_history, model, config_input, config_prefix, config_context,
|
142 |
+
config_output, task, dataset, language, num_examples, zero_shot):
|
143 |
+
os.environ["OPENAI_API_KEY"] = openai_key
|
144 |
+
client = OpenAI()
|
145 |
+
|
146 |
+
config = {
|
147 |
+
"input": config_input,
|
148 |
+
"prefix": config_prefix,
|
149 |
+
"context": config_context.split(', '),
|
150 |
+
"output": config_output,
|
151 |
+
"language": language,
|
152 |
+
"num_examples": num_examples,
|
153 |
+
"zero_shot": zero_shot
|
154 |
+
}
|
155 |
+
|
156 |
+
response = client.chat.completions.create(
|
157 |
+
model=model,
|
158 |
+
messages=[
|
159 |
+
{
|
160 |
+
"role": "user",
|
161 |
+
"content": [
|
162 |
+
{"type": "text", "text": message},
|
163 |
+
{"type": "image_url", "image_url": url},
|
164 |
+
{"type": "config", "config": config},
|
165 |
+
{"type": "task", "text": task},
|
166 |
+
{"type": "dataset", "text": dataset}
|
167 |
+
],
|
168 |
+
},
|
169 |
+
],
|
170 |
+
max_tokens=1000,
|
171 |
+
)
|
172 |
+
|
173 |
+
out = response.choices[0].message.content
|
174 |
+
|
175 |
+
chat_history.append((message, out))
|
176 |
+
return "", chat_history
|
177 |
+
|
178 |
+
|
179 |
+
# Bind functions to dropdown changes and button click
|
180 |
+
# task.change(fn=update_datasets, outputs=dataset)
|
181 |
+
language.change(fn=update_language_selection, inputs=language, outputs=[prefix_selection, context_selection, examples_selection, output_selection])
|
182 |
+
|
183 |
+
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=few_shot)
|
184 |
+
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=num_examples)
|
185 |
+
task.change(fn=update_datasets, inputs=task, outputs=dataset)
|
186 |
+
task.change(fn=toggle_task_inputs, inputs=task, outputs=[
|
187 |
+
question, context, text, sentence, hypothesis, premise,
|
188 |
+
])
|
189 |
+
generate_button.click(
|
190 |
+
generatePrompt,
|
191 |
+
inputs=[
|
192 |
+
instruction, num_examples, zero_shot,
|
193 |
+
task, language, dataset, prefix_selection, context_selection, examples_selection, output_selection,
|
194 |
+
text, question, context, sentence, hypothesis, premise
|
195 |
+
|
196 |
+
],
|
197 |
+
outputs=[prompt]
|
198 |
+
)
|
199 |
+
|
200 |
+
config_recommendation.click(
|
201 |
+
recommend_config,
|
202 |
+
inputs=[
|
203 |
+
task,
|
204 |
+
language,
|
205 |
+
model_type
|
206 |
+
],
|
207 |
+
outputs=[config_prompt]
|
208 |
+
)
|
209 |
+
|
210 |
+
if __name__ == '__main__':
|
211 |
+
demo.launch()
|
generate_prompt.py
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import enum
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import string
|
8 |
+
import sys
|
9 |
+
import unicodedata
|
10 |
+
from typing import Any, Dict, List, NewType, Union
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import openai
|
14 |
+
import pandas as pd
|
15 |
+
import requests
|
16 |
+
import yaml
|
17 |
+
from datasets import Dataset, load_dataset
|
18 |
+
from easygoogletranslate import EasyGoogleTranslate
|
19 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
20 |
+
from tqdm import tqdm
|
21 |
+
from yaml.loader import SafeLoader
|
22 |
+
|
23 |
+
from selective_pre_translation.tasks import qa, summarization, ner, nli
|
24 |
+
|
25 |
+
|
26 |
+
# from models.model_completion import gpt3x_completion, gemini_completion
|
27 |
+
|
28 |
+
class LanguageType(enum.Enum):
|
29 |
+
Low = "Low"
|
30 |
+
High = "High"
|
31 |
+
|
32 |
+
|
33 |
+
class ModelType(enum.Enum):
|
34 |
+
English = "English"
|
35 |
+
Multilingual = "Multilingual"
|
36 |
+
|
37 |
+
|
38 |
+
def get_entities_gpt3_long(prompt):
|
39 |
+
response = openai.ChatCompletion.create(
|
40 |
+
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
41 |
+
)
|
42 |
+
return response["choices"][0]["message"]["content"]
|
43 |
+
|
44 |
+
|
45 |
+
def gpt3x_completion(
|
46 |
+
prompt: Union[str, List[Dict[str, str]]],
|
47 |
+
) -> str:
|
48 |
+
import os
|
49 |
+
import openai
|
50 |
+
os.environ["OPENAI_API_KEY"] = ''
|
51 |
+
|
52 |
+
|
53 |
+
def get_entities_chatGPT(final_prompt):
|
54 |
+
response = openai.ChatCompletion.create(
|
55 |
+
engine="gpt35-16k",
|
56 |
+
temperature=0,
|
57 |
+
messages=[
|
58 |
+
{"role": "user", "content": final_prompt}
|
59 |
+
]
|
60 |
+
)
|
61 |
+
return response['choices'][0]['message']['content']
|
62 |
+
|
63 |
+
return get_entities_chatGPT(final_prompt=prompt)
|
64 |
+
|
65 |
+
|
66 |
+
def mixtral_completion(prompt):
|
67 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
68 |
+
|
69 |
+
# Define your Together API key
|
70 |
+
together_api_key = "" # Replace with your actual API key
|
71 |
+
|
72 |
+
# Define the request payload
|
73 |
+
payload = {
|
74 |
+
"temperature": 0,
|
75 |
+
"max_tokens": 30,
|
76 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
77 |
+
"messages": [{"role": "user", "content": f"{prompt}"}],
|
78 |
+
}
|
79 |
+
|
80 |
+
# Define request headers
|
81 |
+
headers = {
|
82 |
+
"Authorization": f"Bearer {together_api_key}",
|
83 |
+
"Content-Type": "application/json",
|
84 |
+
}
|
85 |
+
|
86 |
+
# Send POST request
|
87 |
+
response = requests.post(url, json=payload, headers=headers)
|
88 |
+
|
89 |
+
# Check response status
|
90 |
+
if response.status_code == 200:
|
91 |
+
# Print the response content (API output)
|
92 |
+
return response.json()["choices"][0]["message"]["content"]
|
93 |
+
else:
|
94 |
+
# Print error message if request fails
|
95 |
+
print(f"Error: {response.status_code} - {response.text}")
|
96 |
+
|
97 |
+
|
98 |
+
XQUAD_LANG2CODES = {
|
99 |
+
"bengali": "bn",
|
100 |
+
"korean": "ko",
|
101 |
+
"swahili": "sw",
|
102 |
+
"english": "en",
|
103 |
+
"indonesian": "id",
|
104 |
+
"arabic": "ar",
|
105 |
+
"finnish": "fi",
|
106 |
+
"telugu": "te",
|
107 |
+
"russian": "ru",
|
108 |
+
"german": "de",
|
109 |
+
"greek": "el",
|
110 |
+
"hindi": "hi",
|
111 |
+
"vietnamese": "vi",
|
112 |
+
"romanian": "ro",
|
113 |
+
}
|
114 |
+
|
115 |
+
INDICQA_LANG2CODES = {
|
116 |
+
"indicqa": "as",
|
117 |
+
"bengali": "bn",
|
118 |
+
"gujarati": "gu",
|
119 |
+
"hindi": "hi",
|
120 |
+
"kannada": "kn",
|
121 |
+
"malayalam": "ml",
|
122 |
+
"marathi": "mr",
|
123 |
+
"odia": "or",
|
124 |
+
"punjabi": "pa",
|
125 |
+
"tamil": "ta",
|
126 |
+
"telugu": "te",
|
127 |
+
"assamese": "as",
|
128 |
+
}
|
129 |
+
|
130 |
+
PUNCT = {
|
131 |
+
chr(i)
|
132 |
+
for i in range(sys.maxunicode)
|
133 |
+
if unicodedata.category(chr(i)).startswith("P")
|
134 |
+
}.union(string.punctuation)
|
135 |
+
WHITESPACE_LANGS = ["en", "es", "hi", "vi", "de", "ar"]
|
136 |
+
MIXED_SEGMENTATION_LANGS = ["zh"]
|
137 |
+
|
138 |
+
TYDIQA_LANG2CODES = {
|
139 |
+
"bengali": "bn",
|
140 |
+
"korean": "ko",
|
141 |
+
"swahili": "sw",
|
142 |
+
"english": "en",
|
143 |
+
"indonesian": "id",
|
144 |
+
"arabic": "ar",
|
145 |
+
"finnish": "fi",
|
146 |
+
"telugu": "te",
|
147 |
+
"russian": "ru",
|
148 |
+
"assamese": "as",
|
149 |
+
"persian": "fa",
|
150 |
+
}
|
151 |
+
|
152 |
+
logger = logging.Logger("Xlsum_task")
|
153 |
+
LANGUAGE_TO_SUFFIX = {
|
154 |
+
"chinese_simplified": "zh-CN",
|
155 |
+
"french": "fr",
|
156 |
+
"portuguese": "pt",
|
157 |
+
"english": "en",
|
158 |
+
"arabic": "ar",
|
159 |
+
"hindi": "hi",
|
160 |
+
"indonesian": "id",
|
161 |
+
"amharic": "am",
|
162 |
+
"bengali": "bn",
|
163 |
+
"telugu": "te",
|
164 |
+
"burmese": "my",
|
165 |
+
"german": "de",
|
166 |
+
"greek": "el",
|
167 |
+
"tamil": "ta",
|
168 |
+
"assamese": "as",
|
169 |
+
"hindi": "hi",
|
170 |
+
"vietnamese": "vi",
|
171 |
+
"russian": "ru",
|
172 |
+
"telugu": "te",
|
173 |
+
"romanian": "ro",
|
174 |
+
"malayalam": "ml",
|
175 |
+
"persian": "fa",
|
176 |
+
}
|
177 |
+
|
178 |
+
PARAMS = NewType("PARAMS", Dict[str, Any])
|
179 |
+
|
180 |
+
|
181 |
+
def read_parameters(args_path) -> PARAMS:
|
182 |
+
with open(args_path) as f:
|
183 |
+
args = yaml.load(f, Loader=SafeLoader)
|
184 |
+
return args
|
185 |
+
|
186 |
+
|
187 |
+
def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
188 |
+
if dataset_name == "indicqa":
|
189 |
+
if split != "train":
|
190 |
+
dataset = load_dataset(
|
191 |
+
"ai4bharat/IndicQA", f"indicqa.{INDICQA_LANG2CODES[lang]}"
|
192 |
+
)[split]
|
193 |
+
else:
|
194 |
+
dataset = load_dataset("squad_v2")[split]
|
195 |
+
elif dataset_name == "xquad":
|
196 |
+
if split != "train":
|
197 |
+
dataset = load_dataset("xquad", f"xquad.{XQUAD_LANG2CODES[lang]}")[
|
198 |
+
"validation"
|
199 |
+
]
|
200 |
+
else:
|
201 |
+
dataset = load_dataset("squad")[split]
|
202 |
+
elif dataset_name == "tydiqa":
|
203 |
+
dataset = load_dataset("tydiqa", "secondary_task")[split]
|
204 |
+
dataset = dataset.map(
|
205 |
+
lambda example: {"lang": TYDIQA_LANG2CODES[example["id"].split("-")[0]]}
|
206 |
+
)
|
207 |
+
dataset = dataset.filter(lambda example: example["lang"] == lang)
|
208 |
+
elif dataset_name == "mlqa":
|
209 |
+
if split == "train":
|
210 |
+
print("No Training Data for MLQA, switching to validation!")
|
211 |
+
split = "validation"
|
212 |
+
if translate_test:
|
213 |
+
dataset_name = f"mlqa-translate-test.{lang}"
|
214 |
+
else:
|
215 |
+
dataset_name = f"mlqa.{lang}.{lang}"
|
216 |
+
|
217 |
+
dataset = load_dataset("mlqa", dataset_name)[split]
|
218 |
+
|
219 |
+
else:
|
220 |
+
raise NotImplementedError()
|
221 |
+
return dataset.select(np.arange(limit))
|
222 |
+
|
223 |
+
|
224 |
+
def construct_prompt(
|
225 |
+
instruction: str,
|
226 |
+
test_example: dict,
|
227 |
+
ic_examples: List[dict],
|
228 |
+
zero_shot: bool,
|
229 |
+
lang: str,
|
230 |
+
config: Dict[Any, Any],
|
231 |
+
):
|
232 |
+
example_prompt = PromptTemplate(
|
233 |
+
input_variables=["context", "question", "answers"],
|
234 |
+
template="Context: {context}\nQuestion: {question}\n" "Answers: {answers}",
|
235 |
+
)
|
236 |
+
|
237 |
+
zero_shot_template = (
|
238 |
+
f"""{instruction}""" + "\n<Context>: {context} \n<Question>: {question} " ""
|
239 |
+
)
|
240 |
+
|
241 |
+
prompt = (
|
242 |
+
FewShotPromptTemplate(
|
243 |
+
examples=ic_examples,
|
244 |
+
prefix=instruction,
|
245 |
+
example_prompt=example_prompt,
|
246 |
+
suffix="<Context>: {context} \n<Question>: {question} \nAnswers: ?",
|
247 |
+
input_variables=["question", "context"],
|
248 |
+
)
|
249 |
+
if not zero_shot
|
250 |
+
else PromptTemplate(
|
251 |
+
input_variables=["question", "context"], template=zero_shot_template
|
252 |
+
)
|
253 |
+
)
|
254 |
+
|
255 |
+
label = test_example["answers"]
|
256 |
+
if config["input"] != lang:
|
257 |
+
test_example = _translate_example(
|
258 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
259 |
+
)
|
260 |
+
|
261 |
+
return (
|
262 |
+
prompt.format(
|
263 |
+
question=test_example["question"], context=test_example["context"]
|
264 |
+
),
|
265 |
+
label,
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
def dump_metrics(
|
270 |
+
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
271 |
+
):
|
272 |
+
# Check if the metric logger file exists
|
273 |
+
file_exists = os.path.exists(metric_logger_path)
|
274 |
+
|
275 |
+
# Open the CSV file in append mode
|
276 |
+
with open(metric_logger_path, "a", newline="") as f:
|
277 |
+
csvwriter = csv.writer(f, delimiter=",")
|
278 |
+
|
279 |
+
# Write header row if the file is newly created
|
280 |
+
if not file_exists:
|
281 |
+
header = ["Language", "Prefix", "Input", "Context", "Output", "F1", "Em"]
|
282 |
+
csvwriter.writerow(header)
|
283 |
+
|
284 |
+
csvwriter.writerow(
|
285 |
+
[
|
286 |
+
lang,
|
287 |
+
config["prefix"],
|
288 |
+
config["input"],
|
289 |
+
config["context"][0],
|
290 |
+
config["output"],
|
291 |
+
f1,
|
292 |
+
em,
|
293 |
+
]
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
def dump_predictions(idx, response, label, response_logger_file):
|
298 |
+
obj = {"q_idx": idx, "prediction": response, "label": label}
|
299 |
+
with open(response_logger_file, "a") as f:
|
300 |
+
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
301 |
+
|
302 |
+
|
303 |
+
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
304 |
+
translator = EasyGoogleTranslate(
|
305 |
+
source_language="en",
|
306 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
307 |
+
timeout=50,
|
308 |
+
)
|
309 |
+
return translator.translate(basic_instruction)
|
310 |
+
|
311 |
+
|
312 |
+
def _translate_prediction_to_output_language(
|
313 |
+
prediction: str, prediction_language: str, output_language: str
|
314 |
+
) -> str:
|
315 |
+
translator = EasyGoogleTranslate(
|
316 |
+
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
317 |
+
target_language=LANGUAGE_TO_SUFFIX[output_language],
|
318 |
+
timeout=10,
|
319 |
+
)
|
320 |
+
return translator.translate(prediction)
|
321 |
+
|
322 |
+
|
323 |
+
def create_instruction(lang: str, expected_output: str):
|
324 |
+
basic_instruction = (
|
325 |
+
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions:\n"
|
326 |
+
"1. The answer should include only words from the given context\n"
|
327 |
+
"2. The answer must include up to 5 words\n"
|
328 |
+
"3. The answer Should be the shortest as possible\n"
|
329 |
+
f"4. The answer must be in {expected_output} only!, not another language!!!"
|
330 |
+
)
|
331 |
+
return (
|
332 |
+
basic_instruction
|
333 |
+
if lang == "english"
|
334 |
+
else _translate_instruction(basic_instruction, target_language=lang)
|
335 |
+
)
|
336 |
+
|
337 |
+
|
338 |
+
def _translate_example(
|
339 |
+
example: Dict[str, str], src_language: str, target_language: str
|
340 |
+
):
|
341 |
+
translator = EasyGoogleTranslate(
|
342 |
+
source_language=LANGUAGE_TO_SUFFIX[str(src_language).lower()],
|
343 |
+
target_language=LANGUAGE_TO_SUFFIX[str(target_language).lower()],
|
344 |
+
timeout=30,
|
345 |
+
)
|
346 |
+
|
347 |
+
return {
|
348 |
+
"question": translator.translate(example["question"]),
|
349 |
+
"context": translator.translate(example["context"][:2000])
|
350 |
+
+ translator.translate(example["context"][2000:4000])
|
351 |
+
+ translator.translate(example["context"][4000:6000]),
|
352 |
+
"answers": translator.translate(example["answers"][0]),
|
353 |
+
}
|
354 |
+
# except Exception as e:
|
355 |
+
# print(example["text"])
|
356 |
+
# print(example["summary"])
|
357 |
+
# print(e)
|
358 |
+
|
359 |
+
|
360 |
+
def choose_few_shot_examples(
|
361 |
+
train_dataset: Dataset,
|
362 |
+
few_shot_size: int,
|
363 |
+
context: List[str],
|
364 |
+
selection_criteria: str,
|
365 |
+
lang: str,
|
366 |
+
) -> List[Dict[str, Union[str, int]]]:
|
367 |
+
"""Selects few-shot examples from training datasets
|
368 |
+
|
369 |
+
Args:
|
370 |
+
train_dataset (Dataset): Training Dataset
|
371 |
+
few_shot_size (int): Number of few-shot examples
|
372 |
+
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
List[Dict[str, Union[str, int]]]: Selected examples
|
376 |
+
"""
|
377 |
+
selected_examples = []
|
378 |
+
|
379 |
+
example_idxs = []
|
380 |
+
if selection_criteria == "first_k":
|
381 |
+
example_idxs = list(range(few_shot_size))
|
382 |
+
elif selection_criteria == "random":
|
383 |
+
example_idxs = (
|
384 |
+
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
385 |
+
.astype(int)
|
386 |
+
.tolist()
|
387 |
+
)
|
388 |
+
|
389 |
+
ic_examples = [
|
390 |
+
{
|
391 |
+
"question": train_dataset[idx]["question"],
|
392 |
+
"context": train_dataset[idx]["context"],
|
393 |
+
"answers": train_dataset[idx]["answers"]["text"],
|
394 |
+
}
|
395 |
+
for idx in example_idxs
|
396 |
+
]
|
397 |
+
|
398 |
+
for idx, ic_language in enumerate(context):
|
399 |
+
(
|
400 |
+
selected_examples.append(ic_examples[idx])
|
401 |
+
if ic_language == lang
|
402 |
+
else (
|
403 |
+
selected_examples.append(
|
404 |
+
_translate_example(
|
405 |
+
example=ic_examples[idx],
|
406 |
+
src_language=lang,
|
407 |
+
target_language=ic_language,
|
408 |
+
)
|
409 |
+
)
|
410 |
+
)
|
411 |
+
)
|
412 |
+
|
413 |
+
return selected_examples
|
414 |
+
|
415 |
+
|
416 |
+
def normalize_answer(s):
|
417 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
418 |
+
|
419 |
+
def remove_articles(text):
|
420 |
+
return re.sub(r"\b(a|an|the)\b", " ", text)
|
421 |
+
|
422 |
+
def white_space_fix(text):
|
423 |
+
return " ".join(text.split())
|
424 |
+
|
425 |
+
def remove_punc(text):
|
426 |
+
exclude = set(PUNCT) # set(string.punctuation)
|
427 |
+
return "".join(ch for ch in text if ch not in exclude)
|
428 |
+
|
429 |
+
def lower(text):
|
430 |
+
return text.lower()
|
431 |
+
|
432 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
433 |
+
|
434 |
+
|
435 |
+
def process_test_example(
|
436 |
+
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
437 |
+
):
|
438 |
+
try:
|
439 |
+
# Your existing code for processing each test example
|
440 |
+
instruction = create_instruction(
|
441 |
+
lang=config["prefix"], expected_output=config["output"]
|
442 |
+
)
|
443 |
+
text_example = {
|
444 |
+
"question": test_example["question"],
|
445 |
+
"context": test_example["context"],
|
446 |
+
"answers": test_example["answers"]["text"],
|
447 |
+
}
|
448 |
+
|
449 |
+
ic_examples = []
|
450 |
+
if not zero_shot:
|
451 |
+
ic_examples = choose_few_shot_examples(
|
452 |
+
train_dataset=test_data,
|
453 |
+
few_shot_size=len(config["context"]),
|
454 |
+
context=config["context"],
|
455 |
+
selection_criteria="random",
|
456 |
+
lang=params["selected_language"],
|
457 |
+
)
|
458 |
+
|
459 |
+
prompt, label = construct_prompt(
|
460 |
+
instruction=instruction,
|
461 |
+
test_example=text_example,
|
462 |
+
ic_examples=ic_examples,
|
463 |
+
zero_shot=zero_shot,
|
464 |
+
lang=lang,
|
465 |
+
config=config,
|
466 |
+
)
|
467 |
+
|
468 |
+
pred = gpt3x_completion(prompt=prompt)
|
469 |
+
print(pred)
|
470 |
+
|
471 |
+
logger.info("Saving prediction to persistent volume")
|
472 |
+
os.makedirs(
|
473 |
+
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
|
474 |
+
)
|
475 |
+
dump_predictions(
|
476 |
+
idx=idx,
|
477 |
+
response=pred,
|
478 |
+
label=label,
|
479 |
+
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
|
480 |
+
)
|
481 |
+
except Exception as e:
|
482 |
+
# Handle exceptions here
|
483 |
+
print(f"Error processing example {idx}: {e}")
|
484 |
+
|
485 |
+
|
486 |
+
def run_one_configuration(selected_language, config, zero_shot, dataset_name, limit=10):
|
487 |
+
test_data = load_qa_dataset(
|
488 |
+
dataset_name=dataset_name,
|
489 |
+
lang=selected_language,
|
490 |
+
split="validation" if dataset_name == "xquad" else "test",
|
491 |
+
limit=limit,
|
492 |
+
)
|
493 |
+
|
494 |
+
for idx, test_example in (pbar := tqdm(enumerate(test_data))):
|
495 |
+
try:
|
496 |
+
instruction = create_instruction(
|
497 |
+
lang=config["prefix"], expected_output=config["output"]
|
498 |
+
)
|
499 |
+
text_example = {
|
500 |
+
"question": test_example["question"],
|
501 |
+
"context": test_example["context"],
|
502 |
+
"answers": test_example["answers"]["text"],
|
503 |
+
}
|
504 |
+
|
505 |
+
ic_examples = []
|
506 |
+
if not zero_shot:
|
507 |
+
ic_examples = choose_few_shot_examples(
|
508 |
+
train_dataset=test_data,
|
509 |
+
few_shot_size=len(config["context"]),
|
510 |
+
context=config["context"],
|
511 |
+
selection_criteria="random",
|
512 |
+
lang=selected_language,
|
513 |
+
)
|
514 |
+
|
515 |
+
prompt, label = construct_prompt(
|
516 |
+
instruction=instruction,
|
517 |
+
test_example=text_example,
|
518 |
+
ic_examples=ic_examples,
|
519 |
+
zero_shot=zero_shot,
|
520 |
+
lang=selected_language,
|
521 |
+
config=config,
|
522 |
+
)
|
523 |
+
|
524 |
+
pred = gpt3x_completion(prompt=prompt)
|
525 |
+
|
526 |
+
return pred
|
527 |
+
|
528 |
+
except Exception as e:
|
529 |
+
print(f"Found an exception {e}, continue to the next example")
|
530 |
+
continue
|
531 |
+
|
532 |
+
|
533 |
+
QA = "QA"
|
534 |
+
SUMMARIZATION = "Summarization"
|
535 |
+
NLI = "NLI"
|
536 |
+
NER = "NER"
|
537 |
+
|
538 |
+
|
539 |
+
def construct_generic_prompt(task, instruction, test_example, zero_shot, num_examples, selected_language, dataset,
|
540 |
+
config):
|
541 |
+
print(task)
|
542 |
+
if task == SUMMARIZATION:
|
543 |
+
prompt = summarization.construct_prompt(
|
544 |
+
instruction=instruction,
|
545 |
+
test_example=test_example,
|
546 |
+
zero_shot=zero_shot,
|
547 |
+
dataset=dataset,
|
548 |
+
num_examples=num_examples,
|
549 |
+
lang=str(selected_language).lower(),
|
550 |
+
config=config,
|
551 |
+
)
|
552 |
+
elif task == NER:
|
553 |
+
prompt = ner.construct_prompt(
|
554 |
+
instruction=instruction,
|
555 |
+
test_example=test_example,
|
556 |
+
zero_shot=zero_shot,
|
557 |
+
num_examples=num_examples,
|
558 |
+
lang=str(selected_language).lower(),
|
559 |
+
config=config,
|
560 |
+
)
|
561 |
+
elif task == QA:
|
562 |
+
prompt = qa.construct_prompt(
|
563 |
+
instruction=instruction,
|
564 |
+
test_example=test_example,
|
565 |
+
zero_shot=zero_shot,
|
566 |
+
num_examples=num_examples,
|
567 |
+
lang=str(selected_language).lower(),
|
568 |
+
config=config,
|
569 |
+
# dataset_name=dataset
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
prompt = nli.construct_prompt(
|
573 |
+
instruction=instruction,
|
574 |
+
test_example=test_example,
|
575 |
+
zero_shot=zero_shot,
|
576 |
+
num_examples=num_examples,
|
577 |
+
lang=str(selected_language).lower(),
|
578 |
+
config=config,
|
579 |
+
)
|
580 |
+
return prompt
|
581 |
+
|
582 |
+
|
583 |
+
def _get_language_type(language: str):
|
584 |
+
df = pd.read_csv("utils/languages_by_word_count.csv")
|
585 |
+
number_of_words = df[df['Language'] == language]['number of words'].iloc[0]
|
586 |
+
print(number_of_words)
|
587 |
+
return LanguageType.Low if number_of_words < 150276400 else LanguageType.High
|
588 |
+
|
589 |
+
|
590 |
+
class Config:
|
591 |
+
def __init__(self, prefix="source", context="source", examples="source", output="source"):
|
592 |
+
self.prefix = prefix
|
593 |
+
self.context = context
|
594 |
+
self.examples = examples
|
595 |
+
self.output = output
|
596 |
+
|
597 |
+
def set(self, prefix=None, context=None, examples=None, output=None):
|
598 |
+
if prefix: self.prefix = prefix
|
599 |
+
if context: self.context = context
|
600 |
+
if examples: self.examples = examples
|
601 |
+
if output: self.output = output
|
602 |
+
|
603 |
+
def to_dict(self):
|
604 |
+
return {
|
605 |
+
'prefix': self.prefix,
|
606 |
+
'context': self.context,
|
607 |
+
'examples': self.examples,
|
608 |
+
'output': self.output
|
609 |
+
}
|
610 |
+
|
611 |
+
|
612 |
+
def recommend_config(task, lang, model_type):
|
613 |
+
print(task)
|
614 |
+
print(model_type)
|
615 |
+
language_type = _get_language_type(lang)
|
616 |
+
config = Config()
|
617 |
+
print(language_type)
|
618 |
+
if task == QA:
|
619 |
+
if model_type == ModelType.English.value:
|
620 |
+
config.set(prefix='source', context='source', examples='source', output='source')
|
621 |
+
else:
|
622 |
+
config.set(prefix='english', context='source', examples='source', output='source')
|
623 |
+
if task == NER:
|
624 |
+
if model_type == ModelType.English.value:
|
625 |
+
config.set(prefix='source', context='source', examples='source', output='source')
|
626 |
+
elif language_type == LanguageType.High:
|
627 |
+
config.set(prefix='english', context='source', examples='source', output='source')
|
628 |
+
else:
|
629 |
+
config.set(prefix='english', context='source', examples='source', output='english')
|
630 |
+
if task == NLI:
|
631 |
+
if model_type == ModelType.English.value:
|
632 |
+
config.set(prefix='source', context='source', examples='source', output='source')
|
633 |
+
elif language_type == LanguageType.High:
|
634 |
+
print("here")
|
635 |
+
config.set(prefix='english', context='source', examples='english')
|
636 |
+
else:
|
637 |
+
print("here1")
|
638 |
+
config.set(prefix='english', context='english', examples='english')
|
639 |
+
if task == SUMMARIZATION:
|
640 |
+
config.set(context='english')
|
641 |
+
|
642 |
+
return config.to_dict()
|
tasks/ner.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Any
|
2 |
+
|
3 |
+
from easygoogletranslate import EasyGoogleTranslate
|
4 |
+
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
5 |
+
|
6 |
+
LANGUAGE_TO_GOOGLE_TRANSLATE_MARK = {
|
7 |
+
"english": "en",
|
8 |
+
"bambara": "bm",
|
9 |
+
"ewe": "ee",
|
10 |
+
"hausa": "ha",
|
11 |
+
"igbo": "ig",
|
12 |
+
"kinyarwanda": "rw",
|
13 |
+
"chichewa": "ny",
|
14 |
+
"twi": "ak",
|
15 |
+
"yoruba": "yo",
|
16 |
+
"slovak": "sk",
|
17 |
+
"serbian": "sr",
|
18 |
+
"swedish": "sv",
|
19 |
+
"vietnamese": "vi",
|
20 |
+
"italian": "it",
|
21 |
+
"portuguese": "pt",
|
22 |
+
"chinese": "zh",
|
23 |
+
"english": "en",
|
24 |
+
"french": "fr"
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
}
|
29 |
+
|
30 |
+
LANGAUGE_TO_PREFIX = {
|
31 |
+
"bambara": "bam",
|
32 |
+
"ewe": "ewe",
|
33 |
+
"fon": "fon",
|
34 |
+
"hausa": "hau",
|
35 |
+
"igbo": "ibo",
|
36 |
+
"kinyarwanda": "kin",
|
37 |
+
"chichewa": "nya",
|
38 |
+
"twi": "twi",
|
39 |
+
"yoruba": "yor",
|
40 |
+
"slovak": "sk",
|
41 |
+
"serbian": "sr",
|
42 |
+
"swedish": "sv",
|
43 |
+
"vietnamese": "vi",
|
44 |
+
"italian": "it",
|
45 |
+
"portuguese": "pt",
|
46 |
+
"chinese": "zh",
|
47 |
+
"english": "en",
|
48 |
+
"french": "fr"
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
53 |
+
translator = EasyGoogleTranslate(
|
54 |
+
source_language="en",
|
55 |
+
target_language=LANGAUGE_TO_PREFIX[target_language],
|
56 |
+
timeout=10,
|
57 |
+
)
|
58 |
+
return translator.translate(basic_instruction)
|
59 |
+
|
60 |
+
|
61 |
+
def create_instruction(lang: str, expected_output: str):
|
62 |
+
basic_instruction = f"""You are an NLP assistant whose
|
63 |
+
purpose is to perform Named Entity Recognition
|
64 |
+
(NER). You will need to give each entity a tag, from the following:
|
65 |
+
PER means a person, ORG means organization.
|
66 |
+
LOC means a location entity.
|
67 |
+
The output should be a list of tuples of the format:
|
68 |
+
['Tag: Entity', 'Tag: Entity'] for each entity in the sentence.
|
69 |
+
The entities should be in {expected_output} language"""
|
70 |
+
|
71 |
+
return (
|
72 |
+
basic_instruction
|
73 |
+
if lang == "english"
|
74 |
+
else _translate_instruction(basic_instruction, target_language=lang)
|
75 |
+
)
|
76 |
+
|
77 |
+
def construct_prompt(
|
78 |
+
instruction: str,
|
79 |
+
test_example: dict,
|
80 |
+
zero_shot: bool,
|
81 |
+
dataset: str,
|
82 |
+
num_examples: int,
|
83 |
+
lang: str,
|
84 |
+
config: Dict[str, str],
|
85 |
+
):
|
86 |
+
if not instruction:
|
87 |
+
print(lang)
|
88 |
+
instruction = create_instruction(lang, config['prefix'])
|
89 |
+
|
90 |
+
example_prompt = PromptTemplate(
|
91 |
+
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
92 |
+
)
|
93 |
+
|
94 |
+
zero_shot_template = f"""{instruction}""" + "\n Input: {text} " ""
|
95 |
+
|
96 |
+
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
97 |
+
|
98 |
+
print(test_data)
|
99 |
+
print(num_examples)
|
100 |
+
print(lang)
|
101 |
+
ic_examples = []
|
102 |
+
if not zero_shot:
|
103 |
+
|
104 |
+
ic_examples = choose_few_shot_examples(
|
105 |
+
train_dataset=test_data,
|
106 |
+
few_shot_size=num_examples,
|
107 |
+
context=[config["context"]] * num_examples,
|
108 |
+
selection_criteria="random",
|
109 |
+
lang=lang,
|
110 |
+
)
|
111 |
+
|
112 |
+
prompt = (
|
113 |
+
FewShotPromptTemplate(
|
114 |
+
examples=ic_examples,
|
115 |
+
prefix=instruction,
|
116 |
+
example_prompt=example_prompt,
|
117 |
+
suffix="<Text>: {text}",
|
118 |
+
input_variables=["text"],
|
119 |
+
)
|
120 |
+
if not zero_shot
|
121 |
+
else PromptTemplate(input_variables=["text"], template=zero_shot_template)
|
122 |
+
)
|
123 |
+
|
124 |
+
print("lang", lang)
|
125 |
+
print(config["input"] , lang)
|
126 |
+
if config["input"] != lang:
|
127 |
+
test_example = _translate_example(
|
128 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
129 |
+
)
|
130 |
+
|
131 |
+
print("test_example", prompt)
|
132 |
+
return prompt.format(text=test_example["text"])
|
tasks/nli.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import time
|
3 |
+
|
4 |
+
import csv
|
5 |
+
import json
|
6 |
+
import multiprocessing as mp
|
7 |
+
import os
|
8 |
+
from typing import Any, Dict, List, NewType, Optional, Union
|
9 |
+
import openai
|
10 |
+
import numpy as np
|
11 |
+
import requests
|
12 |
+
import yaml
|
13 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
14 |
+
from easygoogletranslate import EasyGoogleTranslate
|
15 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
16 |
+
from tqdm import tqdm
|
17 |
+
from yaml.loader import SafeLoader
|
18 |
+
|
19 |
+
LANGUAGE_TO_SUFFIX = {
|
20 |
+
"chinese_simplified": "zh-CN",
|
21 |
+
"french": "fr",
|
22 |
+
"portuguese": "pt",
|
23 |
+
"english": "en",
|
24 |
+
"arabic": "ar",
|
25 |
+
"hindi": "hi",
|
26 |
+
"indonesian": "id",
|
27 |
+
"amharic": "am",
|
28 |
+
"bengali": "bn",
|
29 |
+
"burmese": "my",
|
30 |
+
"chinese": "zh-CN",
|
31 |
+
"swahili": "sw",
|
32 |
+
"bulgarian": "bg",
|
33 |
+
"thai": "th",
|
34 |
+
"urdu": "ur",
|
35 |
+
"turkish": "tr",
|
36 |
+
"spanish": "es",
|
37 |
+
"chinese": "zh",
|
38 |
+
"greek": "el",
|
39 |
+
"german": "de"
|
40 |
+
|
41 |
+
|
42 |
+
}
|
43 |
+
|
44 |
+
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
45 |
+
|
46 |
+
PARAMS = NewType("PARAMS", Dict[str, Any])
|
47 |
+
|
48 |
+
|
49 |
+
def gemini_completion(prompt):
|
50 |
+
# Define the endpoint URL
|
51 |
+
genai.configure(api_key="AIzaSyBnghQNoOS2qiacHjqutK1RpPV5y-gv7Pg")
|
52 |
+
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
53 |
+
return model.generate_content(prompt).text
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def gpt3x_completion(
|
58 |
+
prompt: Union[str, List[Dict[str, str]]],
|
59 |
+
model: str = "chatgpt",
|
60 |
+
# run_details: Any = {},
|
61 |
+
# num_evals_per_sec: int = 2,
|
62 |
+
# **model_params,
|
63 |
+
) -> str:
|
64 |
+
import os
|
65 |
+
import openai
|
66 |
+
os.environ["OPENAI_API_KEY"] = ''
|
67 |
+
|
68 |
+
|
69 |
+
def get_entities_chatGPT(final_prompt):
|
70 |
+
response = openai.ChatCompletion.create(
|
71 |
+
engine="gpt35-16k",
|
72 |
+
temperature=0,
|
73 |
+
messages=[
|
74 |
+
{"role": "user", "content": final_prompt}
|
75 |
+
]
|
76 |
+
)
|
77 |
+
return response['choices'][0]['message']['content']
|
78 |
+
|
79 |
+
return get_entities_chatGPT(final_prompt=prompt)
|
80 |
+
|
81 |
+
def mixtral_completion(prompt):
|
82 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
83 |
+
|
84 |
+
# Define your Together API key
|
85 |
+
together_api_key = "" # Replace with your actual API key
|
86 |
+
|
87 |
+
# Define the request payload
|
88 |
+
payload = {
|
89 |
+
"temperature": 0,
|
90 |
+
"max_tokens": 30,
|
91 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
92 |
+
"messages": [{"role": "user", "content": f"{prompt}"}],
|
93 |
+
}
|
94 |
+
|
95 |
+
# Define request headers
|
96 |
+
headers = {
|
97 |
+
"Authorization": f"Bearer {together_api_key}",
|
98 |
+
"Content-Type": "application/json",
|
99 |
+
}
|
100 |
+
|
101 |
+
# Send POST request
|
102 |
+
response = requests.post(url, json=payload, headers=headers)
|
103 |
+
|
104 |
+
# Check response status
|
105 |
+
if response.status_code == 200:
|
106 |
+
# Print the response content (API output)
|
107 |
+
return response.json()["choices"][0]["message"]["content"]
|
108 |
+
else:
|
109 |
+
# Print error message if request fails
|
110 |
+
print(f"Error: {response.status_code} - {response.text}")
|
111 |
+
|
112 |
+
|
113 |
+
def read_parameters(args_path) -> PARAMS:
|
114 |
+
with open(args_path) as f:
|
115 |
+
args = yaml.load(f, Loader=SafeLoader)
|
116 |
+
return args
|
117 |
+
|
118 |
+
|
119 |
+
def get_key(key_path):
|
120 |
+
with open(key_path) as f:
|
121 |
+
key = f.read().split("\n")[0]
|
122 |
+
return key
|
123 |
+
|
124 |
+
|
125 |
+
def _translate_example(
|
126 |
+
example: Dict[str, str], src_language: str, target_language: str
|
127 |
+
):
|
128 |
+
translator = EasyGoogleTranslate(
|
129 |
+
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
130 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
131 |
+
timeout=30,
|
132 |
+
)
|
133 |
+
try:
|
134 |
+
return {
|
135 |
+
"premise": translator.translate(example["premise"]),
|
136 |
+
"hypothesis": translator.translate(example["hypothesis"]),
|
137 |
+
"label": "",
|
138 |
+
}
|
139 |
+
except Exception as e:
|
140 |
+
print(e)
|
141 |
+
|
142 |
+
|
143 |
+
def choose_few_shot_examples(
|
144 |
+
train_dataset: Dataset,
|
145 |
+
few_shot_size: int,
|
146 |
+
context: List[str],
|
147 |
+
selection_criteria: str,
|
148 |
+
lang: str,
|
149 |
+
) -> List[Dict[str, Union[str, int]]]:
|
150 |
+
"""Selects few-shot examples from training datasets
|
151 |
+
|
152 |
+
Args:
|
153 |
+
train_dataset (Dataset): Training Dataset
|
154 |
+
few_shot_size (int): Number of few-shot examples
|
155 |
+
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
List[Dict[str, Union[str, int]]]: Selected examples
|
159 |
+
"""
|
160 |
+
selected_examples = []
|
161 |
+
|
162 |
+
example_idxs = []
|
163 |
+
if selection_criteria == "first_k":
|
164 |
+
example_idxs = list(range(few_shot_size))
|
165 |
+
elif selection_criteria == "random":
|
166 |
+
example_idxs = (
|
167 |
+
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
168 |
+
.astype(int)
|
169 |
+
.tolist()
|
170 |
+
)
|
171 |
+
|
172 |
+
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
173 |
+
|
174 |
+
ic_examples = [
|
175 |
+
{
|
176 |
+
"premise": example["premise"],
|
177 |
+
"hypothesis": example["hypothesis"],
|
178 |
+
"label": NUMBER_TO_TAG[example["label"]],
|
179 |
+
}
|
180 |
+
for example in ic_examples
|
181 |
+
]
|
182 |
+
|
183 |
+
for idx, ic_language in enumerate(context):
|
184 |
+
(
|
185 |
+
selected_examples.append(ic_examples[idx])
|
186 |
+
if ic_language == lang
|
187 |
+
else (
|
188 |
+
selected_examples.append(
|
189 |
+
_translate_example(
|
190 |
+
example=ic_examples[idx],
|
191 |
+
src_language=lang,
|
192 |
+
target_language=ic_language,
|
193 |
+
)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
)
|
197 |
+
|
198 |
+
return selected_examples
|
199 |
+
|
200 |
+
|
201 |
+
def load_xnli_dataset(
|
202 |
+
dataset_name: str,
|
203 |
+
lang: str,
|
204 |
+
split: str,
|
205 |
+
limit: int = 200,
|
206 |
+
) -> Union[Dataset, DatasetDict]:
|
207 |
+
"""
|
208 |
+
Args:
|
209 |
+
lang (str): Language for which xnli dataset is to be loaded
|
210 |
+
split (str): Train test of validation split of the model to load
|
211 |
+
dataset_frac (float): Fraction of examples to load. Defaults to 1.0
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
Union[Dataset, DatasetDict]: huggingface dataset object
|
215 |
+
"""
|
216 |
+
if dataset_name == "indicxnli": ##PJ:To add except hindi
|
217 |
+
dataset = load_dataset("Divyanshu/indicxnli", LANGUAGE_TO_SUFFIX[lang])[split]
|
218 |
+
else:
|
219 |
+
dataset = load_dataset("xnli", LANGUAGE_TO_SUFFIX[lang])[split]
|
220 |
+
return dataset.select(np.arange(limit))
|
221 |
+
|
222 |
+
|
223 |
+
def construct_prompt(
|
224 |
+
instruction: str, test_example: dict, ic_examples: List[dict], zero_shot: bool
|
225 |
+
):
|
226 |
+
example_prompt = PromptTemplate(
|
227 |
+
input_variables=["premise", "hypothesis", "label"],
|
228 |
+
template="Premise: {premise}\n Hypothesis: {hypothesis} \n Label{label}",
|
229 |
+
)
|
230 |
+
|
231 |
+
zero_shot_template = (
|
232 |
+
f"""{instruction}""" + "\n hypothesis: {hypothesis} + \n Premise: {premise}" ""
|
233 |
+
)
|
234 |
+
|
235 |
+
prompt = (
|
236 |
+
FewShotPromptTemplate(
|
237 |
+
examples=ic_examples,
|
238 |
+
prefix=instruction,
|
239 |
+
example_prompt=example_prompt,
|
240 |
+
suffix="Premise: {premise} \n Hypothesis: {hypothesis}",
|
241 |
+
input_variables=["hypothesis", "premise"],
|
242 |
+
)
|
243 |
+
if not zero_shot
|
244 |
+
else PromptTemplate(
|
245 |
+
input_variables=["hypothesis", "premise"], template=zero_shot_template
|
246 |
+
)
|
247 |
+
)
|
248 |
+
|
249 |
+
return (
|
250 |
+
prompt.format(
|
251 |
+
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
252 |
+
),
|
253 |
+
test_example["label"],
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
def dump_metrics(
|
258 |
+
lang: str,
|
259 |
+
config: Dict[str, str],
|
260 |
+
r1: float,
|
261 |
+
r2: float,
|
262 |
+
rL: float,
|
263 |
+
metric_logger_path: str,
|
264 |
+
):
|
265 |
+
# Check if the metric logger file exists
|
266 |
+
file_exists = os.path.exists(metric_logger_path)
|
267 |
+
|
268 |
+
# Open the CSV file in append mode
|
269 |
+
with open(metric_logger_path, "a", newline="") as f:
|
270 |
+
csvwriter = csv.writer(f, delimiter=",")
|
271 |
+
|
272 |
+
# Write header row if the file is newly created
|
273 |
+
if not file_exists:
|
274 |
+
header = [
|
275 |
+
"Language",
|
276 |
+
"Prefix",
|
277 |
+
"Input",
|
278 |
+
"Context",
|
279 |
+
"Output",
|
280 |
+
"R1",
|
281 |
+
"R2",
|
282 |
+
"RL",
|
283 |
+
]
|
284 |
+
csvwriter.writerow(header)
|
285 |
+
|
286 |
+
csvwriter.writerow(
|
287 |
+
[
|
288 |
+
lang,
|
289 |
+
config["prefix"],
|
290 |
+
config["input"],
|
291 |
+
config["context"][0],
|
292 |
+
config["output"],
|
293 |
+
r1,
|
294 |
+
r2,
|
295 |
+
rL,
|
296 |
+
]
|
297 |
+
)
|
298 |
+
|
299 |
+
|
300 |
+
def dump_predictions(idx, response, label, response_logger_file):
|
301 |
+
obj = {"q_idx": idx, "prediction": response, "label": label}
|
302 |
+
with open(response_logger_file, "a") as f:
|
303 |
+
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
304 |
+
|
305 |
+
|
306 |
+
def compute_rouge(scorer, pred, label):
|
307 |
+
score = scorer.score(pred, label)
|
308 |
+
return score["rouge1"], score["rouge2"], score["rougeL"]
|
309 |
+
|
310 |
+
|
311 |
+
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
312 |
+
translator = EasyGoogleTranslate(
|
313 |
+
source_language="en",
|
314 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
315 |
+
timeout=10,
|
316 |
+
)
|
317 |
+
return translator.translate(basic_instruction)
|
318 |
+
|
319 |
+
|
320 |
+
def _translate_prediction_to_output_language(
|
321 |
+
prediction: str, prediction_language: str, output_language: str
|
322 |
+
) -> str:
|
323 |
+
translator = EasyGoogleTranslate(
|
324 |
+
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
325 |
+
target_language=LANGUAGE_TO_SUFFIX[output_language],
|
326 |
+
timeout=10,
|
327 |
+
)
|
328 |
+
return translator.translate(prediction)
|
329 |
+
|
330 |
+
|
331 |
+
def create_instruction(lang: str):
|
332 |
+
basic_instruction = f"""
|
333 |
+
You are an NLP assistant whose purpose is to solve Natural Language Inference (NLI) problems.
|
334 |
+
NLI is the task of determining the inference relation between two texts: entailment,
|
335 |
+
contradiction, or neutral.
|
336 |
+
Your answer should be one word of the following - entailment, contradiction, or neutral.
|
337 |
+
Pay attention: The output should be only one word!!!!
|
338 |
+
"""
|
339 |
+
return (
|
340 |
+
basic_instruction
|
341 |
+
if lang == "english"
|
342 |
+
else _translate_instruction(basic_instruction, target_language=lang)
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool= False):
|
347 |
+
if not params:
|
348 |
+
params = read_parameters("../../parameters.yaml")
|
349 |
+
|
350 |
+
lang = params["selected_language"]
|
351 |
+
config = params["config"]
|
352 |
+
zero_shot = len(config["context"]) == 0
|
353 |
+
|
354 |
+
if not zero:
|
355 |
+
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}"
|
356 |
+
else:
|
357 |
+
config_header = f"{config['input']}_{config['prefix']}_zero"
|
358 |
+
test_data = load_xnli_dataset(
|
359 |
+
dataset_name=params["dataset_name"],
|
360 |
+
lang=lang,
|
361 |
+
split="test",
|
362 |
+
limit=params["limit"],
|
363 |
+
)
|
364 |
+
|
365 |
+
pool = mp.Pool(processes=3)
|
366 |
+
|
367 |
+
# Iterate over test_data using tqdm for progress tracking
|
368 |
+
for idx, test_example in tqdm(enumerate(test_data), total=len(test_data)):
|
369 |
+
# Apply asynchronous processing of each test example
|
370 |
+
pool.apply_async(
|
371 |
+
process_test_example,
|
372 |
+
args=(
|
373 |
+
test_data,
|
374 |
+
config_header,
|
375 |
+
idx,
|
376 |
+
test_example,
|
377 |
+
config,
|
378 |
+
zero_shot,
|
379 |
+
lang,
|
380 |
+
params,
|
381 |
+
),
|
382 |
+
)
|
383 |
+
|
384 |
+
# Close the pool and wait for all processes to finish
|
385 |
+
pool.close()
|
386 |
+
pool.join()
|
387 |
+
|
388 |
+
def process_test_example(
|
389 |
+
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
390 |
+
):
|
391 |
+
try:
|
392 |
+
instruction = create_instruction(lang=config["prefix"])
|
393 |
+
text_example = {
|
394 |
+
"premise": test_example["premise"],
|
395 |
+
"hypothesis": test_example["hypothesis"],
|
396 |
+
"label": test_example["label"],
|
397 |
+
}
|
398 |
+
|
399 |
+
ic_examples = []
|
400 |
+
if not zero_shot:
|
401 |
+
ic_examples = choose_few_shot_examples(
|
402 |
+
train_dataset=test_data,
|
403 |
+
few_shot_size=len(config["context"]),
|
404 |
+
context=config["context"],
|
405 |
+
selection_criteria="random",
|
406 |
+
lang=params["selected_language"],
|
407 |
+
)
|
408 |
+
|
409 |
+
prompt, label = construct_prompt(
|
410 |
+
instruction=instruction,
|
411 |
+
test_example=text_example,
|
412 |
+
ic_examples=ic_examples,
|
413 |
+
zero_shot=zero_shot,
|
414 |
+
)
|
415 |
+
|
416 |
+
pred = get_prediction(prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572)
|
417 |
+
print(pred)
|
418 |
+
|
419 |
+
os.makedirs(
|
420 |
+
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
|
421 |
+
)
|
422 |
+
dump_predictions(
|
423 |
+
idx=idx,
|
424 |
+
response=pred,
|
425 |
+
label=label,
|
426 |
+
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
|
427 |
+
)
|
428 |
+
|
429 |
+
except Exception as e:
|
430 |
+
# Handle exceptions here
|
431 |
+
print(f"Error processing example {idx}: {e}")
|
432 |
+
|
433 |
+
|
434 |
+
def construct_prompt(
|
435 |
+
instruction: str,
|
436 |
+
test_example: dict,
|
437 |
+
zero_shot: bool,
|
438 |
+
num_examples: int,
|
439 |
+
lang: str,
|
440 |
+
config: Dict[str, str],
|
441 |
+
dataset_name: str = 'xnli'
|
442 |
+
):
|
443 |
+
|
444 |
+
if not instruction:
|
445 |
+
print(lang)
|
446 |
+
instruction = create_instruction(lang)
|
447 |
+
|
448 |
+
example_prompt = PromptTemplate(
|
449 |
+
input_variables=["premise", "hypothesis", "label"],
|
450 |
+
template="Premise {premise}\n Hypothesis {hypothesis} \n{label}",
|
451 |
+
)
|
452 |
+
|
453 |
+
zero_shot_template = (
|
454 |
+
f"""{instruction}""" + "\n Hypothesis: {hypothesis} + \n Premise: {premise}" ""
|
455 |
+
)
|
456 |
+
|
457 |
+
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
458 |
+
|
459 |
+
print(test_data)
|
460 |
+
print(num_examples)
|
461 |
+
print(lang)
|
462 |
+
ic_examples = []
|
463 |
+
if not zero_shot:
|
464 |
+
|
465 |
+
ic_examples = choose_few_shot_examples(
|
466 |
+
train_dataset=test_data,
|
467 |
+
few_shot_size=num_examples,
|
468 |
+
context=[config["context"]] * num_examples,
|
469 |
+
selection_criteria="random",
|
470 |
+
lang=lang,
|
471 |
+
)
|
472 |
+
|
473 |
+
prompt = (
|
474 |
+
FewShotPromptTemplate(
|
475 |
+
examples=ic_examples,
|
476 |
+
prefix=instruction,
|
477 |
+
example_prompt=example_prompt,
|
478 |
+
suffix="{premise} \n{hypothesis}",
|
479 |
+
input_variables=["hypothesis", "premise"],
|
480 |
+
)
|
481 |
+
if not zero_shot
|
482 |
+
else PromptTemplate(
|
483 |
+
input_variables=["hypothesis", "premise"], template=zero_shot_template
|
484 |
+
)
|
485 |
+
)
|
486 |
+
|
487 |
+
print("lang", lang)
|
488 |
+
print(config["input"] , lang)
|
489 |
+
if config["input"] != lang:
|
490 |
+
test_example = _translate_example(
|
491 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
492 |
+
)
|
493 |
+
|
494 |
+
return prompt.format(
|
495 |
+
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
496 |
+
)
|
tasks/qa.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import multiprocessing as mp
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import re
|
8 |
+
|
9 |
+
import string
|
10 |
+
import sys
|
11 |
+
import subprocess
|
12 |
+
import time
|
13 |
+
import unicodedata
|
14 |
+
from typing import Any, Dict, List, NewType, Optional, Union
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import openai
|
18 |
+
import requests
|
19 |
+
import yaml
|
20 |
+
from datasets import Dataset, load_dataset
|
21 |
+
from easygoogletranslate import EasyGoogleTranslate
|
22 |
+
from evaluate import load
|
23 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
24 |
+
from tqdm import tqdm
|
25 |
+
from yaml.loader import SafeLoader
|
26 |
+
|
27 |
+
|
28 |
+
# from models.model_completion import gpt3x_completion, gemini_completion
|
29 |
+
|
30 |
+
def gemini_completion(prompt):
|
31 |
+
# Define the endpoint URL
|
32 |
+
genai.configure(api_key="")
|
33 |
+
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
34 |
+
return model.generate_content(prompt).text
|
35 |
+
|
36 |
+
|
37 |
+
# checkpoint = "bigscience/mt0-base"
|
38 |
+
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
39 |
+
#
|
40 |
+
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
41 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
|
42 |
+
# model.to("cuda:04")
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
47 |
+
|
48 |
+
|
49 |
+
def get_entities_gpt3_long(prompt):
|
50 |
+
response = openai.ChatCompletion.create(
|
51 |
+
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
52 |
+
)
|
53 |
+
return response["choices"][0]["message"]["content"]
|
54 |
+
|
55 |
+
|
56 |
+
def gpt3x_completion(
|
57 |
+
prompt: Union[str, List[Dict[str, str]]],
|
58 |
+
model: str = "chatgpt",
|
59 |
+
# run_details: Any = {},
|
60 |
+
# num_evals_per_sec: int = 2,
|
61 |
+
# **model_params,
|
62 |
+
) -> str:
|
63 |
+
import os
|
64 |
+
import openai
|
65 |
+
os.environ["OPENAI_API_KEY"] = ''
|
66 |
+
openai.api_type = "azure"
|
67 |
+
|
68 |
+
def get_entities_chatGPT(final_prompt):
|
69 |
+
response = openai.ChatCompletion.create(
|
70 |
+
engine="gpt35-16k",
|
71 |
+
temperature=0,
|
72 |
+
messages=[
|
73 |
+
{"role": "user", "content": final_prompt}
|
74 |
+
]
|
75 |
+
)
|
76 |
+
return response['choices'][0]['message']['content']
|
77 |
+
|
78 |
+
return get_entities_chatGPT(final_prompt=prompt)
|
79 |
+
|
80 |
+
|
81 |
+
def mt0_completion(prompt):
|
82 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
83 |
+
outputs = model.generate(inputs)
|
84 |
+
return tokenizer.decode(outputs[0])
|
85 |
+
|
86 |
+
|
87 |
+
def mixtral_completion(prompt):
|
88 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
89 |
+
|
90 |
+
# Define your Together API key
|
91 |
+
together_api_key = "" # Replace with your actual API key
|
92 |
+
|
93 |
+
# Define the request payload
|
94 |
+
payload = {
|
95 |
+
"temperature": 0,
|
96 |
+
"max_tokens": 30,
|
97 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
98 |
+
"messages": [{"role": "user", "content": f"{prompt}"}],
|
99 |
+
}
|
100 |
+
|
101 |
+
# Define request headers
|
102 |
+
headers = {
|
103 |
+
"Authorization": f"Bearer {together_api_key}",
|
104 |
+
"Content-Type": "application/json",
|
105 |
+
}
|
106 |
+
|
107 |
+
# Send POST request
|
108 |
+
response = requests.post(url, json=payload, headers=headers)
|
109 |
+
|
110 |
+
# Check response status
|
111 |
+
if response.status_code == 200:
|
112 |
+
# Print the response content (API output)
|
113 |
+
return response.json()["choices"][0]["message"]["content"]
|
114 |
+
else:
|
115 |
+
# Print error message if request fails
|
116 |
+
print(f"Error: {response.status_code} - {response.text}")
|
117 |
+
|
118 |
+
|
119 |
+
XQUAD_LANG2CODES = {
|
120 |
+
"bengali": "bn",
|
121 |
+
"korean": "ko",
|
122 |
+
"swahili": "sw",
|
123 |
+
"english": "en",
|
124 |
+
"indonesian": "id",
|
125 |
+
"arabic": "ar",
|
126 |
+
"finnish": "fi",
|
127 |
+
"telugu": "te",
|
128 |
+
"russian": "ru",
|
129 |
+
"german": "de",
|
130 |
+
"greek": "el",
|
131 |
+
"hindi": "hi",
|
132 |
+
"vietnamese": "vi",
|
133 |
+
"romanian": "ro",
|
134 |
+
}
|
135 |
+
|
136 |
+
INDICQA_LANG2CODES = {
|
137 |
+
"indicqa": "as",
|
138 |
+
"bengali": "bn",
|
139 |
+
"gujarati": "gu",
|
140 |
+
"hindi": "hi",
|
141 |
+
"kannada": "kn",
|
142 |
+
"malayalam": "ml",
|
143 |
+
"marathi": "mr",
|
144 |
+
"odia": "or",
|
145 |
+
"punjabi": "pa",
|
146 |
+
"tamil": "ta",
|
147 |
+
"telugu": "te",
|
148 |
+
"assamese": "as",
|
149 |
+
}
|
150 |
+
|
151 |
+
PUNCT = {
|
152 |
+
chr(i)
|
153 |
+
for i in range(sys.maxunicode)
|
154 |
+
if unicodedata.category(chr(i)).startswith("P")
|
155 |
+
}.union(string.punctuation)
|
156 |
+
WHITESPACE_LANGS = ["en", "es", "hi", "vi", "de", "ar"]
|
157 |
+
MIXED_SEGMENTATION_LANGS = ["zh"]
|
158 |
+
|
159 |
+
TYDIQA_LANG2CODES = {
|
160 |
+
"bengali": "bn",
|
161 |
+
"korean": "ko",
|
162 |
+
"swahili": "sw",
|
163 |
+
"english": "en",
|
164 |
+
"indonesian": "id",
|
165 |
+
"arabic": "ar",
|
166 |
+
"finnish": "fi",
|
167 |
+
"telugu": "te",
|
168 |
+
"russian": "ru",
|
169 |
+
"assamese": "as",
|
170 |
+
"persian": "fa",
|
171 |
+
}
|
172 |
+
|
173 |
+
logger = logging.Logger("Xlsum_task")
|
174 |
+
LANGUAGE_TO_SUFFIX = {
|
175 |
+
"chinese_simplified": "zh-CN",
|
176 |
+
"french": "fr",
|
177 |
+
"portuguese": "pt",
|
178 |
+
"english": "en",
|
179 |
+
"arabic": "ar",
|
180 |
+
"hindi": "hi",
|
181 |
+
"indonesian": "id",
|
182 |
+
"amharic": "am",
|
183 |
+
"bengali": "bn",
|
184 |
+
"telugu": "te",
|
185 |
+
"burmese": "my",
|
186 |
+
"german": "de",
|
187 |
+
"greek": "el",
|
188 |
+
"tamil": "ta",
|
189 |
+
"assamese": "as",
|
190 |
+
"hindi": "hi",
|
191 |
+
"vietnamese": "vi",
|
192 |
+
"russian": "ru",
|
193 |
+
"telugu": "te",
|
194 |
+
"romanian": "ro",
|
195 |
+
"malayalam": "ml",
|
196 |
+
"persian": "fa",
|
197 |
+
}
|
198 |
+
|
199 |
+
PARAMS = NewType("PARAMS", Dict[str, Any])
|
200 |
+
|
201 |
+
|
202 |
+
def read_parameters(args_path) -> PARAMS:
|
203 |
+
with open(args_path) as f:
|
204 |
+
args = yaml.load(f, Loader=SafeLoader)
|
205 |
+
return args
|
206 |
+
|
207 |
+
|
208 |
+
def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
209 |
+
if dataset_name == "indicqa":
|
210 |
+
if split != "train":
|
211 |
+
dataset = load_dataset(
|
212 |
+
"ai4bharat/IndicQA", f"indicqa.{INDICQA_LANG2CODES[lang]}"
|
213 |
+
)[split]
|
214 |
+
else:
|
215 |
+
dataset = load_dataset("squad_v2")[split]
|
216 |
+
elif dataset_name == "xquad":
|
217 |
+
if split != "train":
|
218 |
+
dataset = load_dataset("xquad", f"xquad.{XQUAD_LANG2CODES[lang]}")[
|
219 |
+
"validation"
|
220 |
+
]
|
221 |
+
else:
|
222 |
+
dataset = load_dataset("squad")[split]
|
223 |
+
elif dataset_name == "tydiqa":
|
224 |
+
dataset = load_dataset("tydiqa", "secondary_task")[split]
|
225 |
+
dataset = dataset.map(
|
226 |
+
lambda example: {"lang": TYDIQA_LANG2CODES[example["id"].split("-")[0]]}
|
227 |
+
)
|
228 |
+
dataset = dataset.filter(lambda example: example["lang"] == lang)
|
229 |
+
elif dataset_name == "mlqa":
|
230 |
+
if split == "train":
|
231 |
+
print("No Training Data for MLQA, switching to validation!")
|
232 |
+
split = "validation"
|
233 |
+
if translate_test:
|
234 |
+
dataset_name = f"mlqa-translate-test.{lang}"
|
235 |
+
else:
|
236 |
+
dataset_name = f"mlqa.{lang}.{lang}"
|
237 |
+
|
238 |
+
dataset = load_dataset("mlqa", dataset_name)[split]
|
239 |
+
|
240 |
+
else:
|
241 |
+
raise NotImplementedError()
|
242 |
+
return dataset.select(np.arange(limit))
|
243 |
+
|
244 |
+
|
245 |
+
def construct_prompt(
|
246 |
+
instruction: str,
|
247 |
+
test_example: dict,
|
248 |
+
ic_examples: List[dict],
|
249 |
+
zero_shot: bool,
|
250 |
+
lang: str,
|
251 |
+
config: Any,
|
252 |
+
):
|
253 |
+
example_prompt = PromptTemplate(
|
254 |
+
input_variables=["context", "question", "answers"],
|
255 |
+
template="Context: {context} \n Question: {question} \n " "Answers: {answers}",
|
256 |
+
)
|
257 |
+
|
258 |
+
zero_shot_template = (
|
259 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
260 |
+
)
|
261 |
+
|
262 |
+
prompt = (
|
263 |
+
FewShotPromptTemplate(
|
264 |
+
examples=ic_examples,
|
265 |
+
prefix=instruction,
|
266 |
+
example_prompt=example_prompt,
|
267 |
+
suffix="<Context>: {context} \n <Question>: {question} \n Answers: ?",
|
268 |
+
input_variables=["question", "context"],
|
269 |
+
)
|
270 |
+
if not zero_shot
|
271 |
+
else PromptTemplate(
|
272 |
+
input_variables=["question", "context"], template=zero_shot_template
|
273 |
+
)
|
274 |
+
)
|
275 |
+
|
276 |
+
label = test_example["answers"]
|
277 |
+
if config["input"] != lang:
|
278 |
+
test_example = _translate_example(
|
279 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
280 |
+
)
|
281 |
+
|
282 |
+
return (
|
283 |
+
prompt.format(
|
284 |
+
question=test_example["question"], context=test_example["context"]
|
285 |
+
),
|
286 |
+
label,
|
287 |
+
)
|
288 |
+
|
289 |
+
|
290 |
+
def dump_metrics(
|
291 |
+
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
292 |
+
):
|
293 |
+
# Check if the metric logger file exists
|
294 |
+
file_exists = os.path.exists(metric_logger_path)
|
295 |
+
|
296 |
+
# Open the CSV file in append mode
|
297 |
+
with open(metric_logger_path, "a", newline="") as f:
|
298 |
+
csvwriter = csv.writer(f, delimiter=",")
|
299 |
+
|
300 |
+
# Write header row if the file is newly created
|
301 |
+
if not file_exists:
|
302 |
+
header = ["Language", "Prefix", "Input", "Context", "Output", "F1", "Em"]
|
303 |
+
csvwriter.writerow(header)
|
304 |
+
|
305 |
+
csvwriter.writerow(
|
306 |
+
[
|
307 |
+
lang,
|
308 |
+
config["prefix"],
|
309 |
+
config["input"],
|
310 |
+
config["context"][0],
|
311 |
+
config["output"],
|
312 |
+
f1,
|
313 |
+
em,
|
314 |
+
]
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
def dump_predictions(idx, response, label, response_logger_file):
|
319 |
+
obj = {"q_idx": idx, "prediction": response, "label": label}
|
320 |
+
with open(response_logger_file, "a") as f:
|
321 |
+
f.write(json.dumps(obj, ensure_ascii=False) + " \n ")
|
322 |
+
|
323 |
+
|
324 |
+
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
325 |
+
translator = EasyGoogleTranslate(
|
326 |
+
source_language="en",
|
327 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
328 |
+
timeout=50,
|
329 |
+
)
|
330 |
+
return translator.translate(basic_instruction)
|
331 |
+
|
332 |
+
|
333 |
+
def _translate_prediction_to_output_language(
|
334 |
+
prediction: str, prediction_language: str, output_language: str
|
335 |
+
) -> str:
|
336 |
+
translator = EasyGoogleTranslate(
|
337 |
+
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
338 |
+
target_language=LANGUAGE_TO_SUFFIX[output_language],
|
339 |
+
timeout=10,
|
340 |
+
)
|
341 |
+
return translator.translate(prediction)
|
342 |
+
|
343 |
+
|
344 |
+
def create_instruction(lang: str, expected_output: str):
|
345 |
+
basic_instruction = (
|
346 |
+
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions: \n "
|
347 |
+
"1. The answer should include only words from the given context \n "
|
348 |
+
"2. The answer must include up to 5 words \n "
|
349 |
+
"3. The answer Should be the shortest as possible \n "
|
350 |
+
f"4. The answer must be in {expected_output} only!, not another language!!!"
|
351 |
+
)
|
352 |
+
return (
|
353 |
+
basic_instruction
|
354 |
+
if expected_output == "english"
|
355 |
+
else _translate_instruction(basic_instruction, target_language=lang)
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
def _translate_example(
|
360 |
+
example: Dict[str, str], src_language: str, target_language: str
|
361 |
+
):
|
362 |
+
translator = EasyGoogleTranslate(
|
363 |
+
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
364 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
365 |
+
timeout=30,
|
366 |
+
)
|
367 |
+
try:
|
368 |
+
return {
|
369 |
+
"question": translator.translate(example["question"]),
|
370 |
+
"context": translator.translate(example["context"][:2000])
|
371 |
+
+ translator.translate(example["context"][2000:4000])
|
372 |
+
+ translator.translate(example["context"][4000:6000]),
|
373 |
+
"answers": "",
|
374 |
+
}
|
375 |
+
except Exception as e:
|
376 |
+
pass
|
377 |
+
|
378 |
+
def choose_few_shot_examples(
|
379 |
+
train_dataset: Dataset,
|
380 |
+
few_shot_size: int,
|
381 |
+
context: List[str],
|
382 |
+
selection_criteria: str,
|
383 |
+
lang: str,
|
384 |
+
) -> List[Dict[str, Union[str, int]]]:
|
385 |
+
"""Selects few-shot examples from training datasets
|
386 |
+
|
387 |
+
Args:
|
388 |
+
train_dataset (Dataset): Training Dataset
|
389 |
+
few_shot_size (int): Number of few-shot examples
|
390 |
+
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
List[Dict[str, Union[str, int]]]: Selected examples
|
394 |
+
"""
|
395 |
+
selected_examples = []
|
396 |
+
|
397 |
+
example_idxs = []
|
398 |
+
if selection_criteria == "first_k":
|
399 |
+
example_idxs = list(range(few_shot_size))
|
400 |
+
elif selection_criteria == "random":
|
401 |
+
example_idxs = (
|
402 |
+
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
403 |
+
.astype(int)
|
404 |
+
.tolist()
|
405 |
+
)
|
406 |
+
|
407 |
+
ic_examples = [
|
408 |
+
{
|
409 |
+
"question": train_dataset[idx]["question"],
|
410 |
+
"context": train_dataset[idx]["context"],
|
411 |
+
"answers": train_dataset[idx]["answers"]["text"],
|
412 |
+
}
|
413 |
+
for idx in example_idxs
|
414 |
+
]
|
415 |
+
|
416 |
+
for idx, ic_language in enumerate(context):
|
417 |
+
(
|
418 |
+
selected_examples.append(ic_examples[idx])
|
419 |
+
if ic_language == lang
|
420 |
+
else (
|
421 |
+
selected_examples.append(
|
422 |
+
_translate_example(
|
423 |
+
example=ic_examples[idx],
|
424 |
+
src_language=lang,
|
425 |
+
target_language=ic_language,
|
426 |
+
)
|
427 |
+
)
|
428 |
+
)
|
429 |
+
)
|
430 |
+
|
431 |
+
return selected_examples
|
432 |
+
|
433 |
+
|
434 |
+
def normalize_answer(s):
|
435 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
436 |
+
|
437 |
+
def remove_articles(text):
|
438 |
+
return re.sub(r"\b(a|an|the)\b", " ", text)
|
439 |
+
|
440 |
+
def white_space_fix(text):
|
441 |
+
return " ".join(text.split())
|
442 |
+
|
443 |
+
def remove_punc(text):
|
444 |
+
exclude = set(PUNCT) # set(string.punctuation)
|
445 |
+
return "".join(ch for ch in text if ch not in exclude)
|
446 |
+
|
447 |
+
def lower(text):
|
448 |
+
return text.lower()
|
449 |
+
|
450 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
451 |
+
|
452 |
+
|
453 |
+
def process_test_example(
|
454 |
+
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
455 |
+
):
|
456 |
+
try:
|
457 |
+
# Your existing code for processing each test example
|
458 |
+
instruction = create_instruction(
|
459 |
+
lang=config["prefix"], expected_output=config["output"]
|
460 |
+
)
|
461 |
+
text_example = {
|
462 |
+
"question": test_example["question"],
|
463 |
+
"context": test_example["context"],
|
464 |
+
"answers": test_example["answers"]["text"],
|
465 |
+
}
|
466 |
+
|
467 |
+
ic_examples = []
|
468 |
+
if not zero_shot:
|
469 |
+
ic_examples = choose_few_shot_examples(
|
470 |
+
train_dataset=test_data,
|
471 |
+
few_shot_size=len(config["context"]),
|
472 |
+
context=config["context"],
|
473 |
+
selection_criteria="random",
|
474 |
+
lang=params["selected_language"],
|
475 |
+
)
|
476 |
+
|
477 |
+
prompt, label = construct_prompt(
|
478 |
+
instruction=instruction,
|
479 |
+
test_example=text_example,
|
480 |
+
ic_examples=ic_examples,
|
481 |
+
zero_shot=zero_shot,
|
482 |
+
lang=lang,
|
483 |
+
config=config,
|
484 |
+
)
|
485 |
+
|
486 |
+
print(len(prompt))
|
487 |
+
pred = get_prediction(prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572)
|
488 |
+
# pred = mixtral_completion(prompt)
|
489 |
+
print(pred)
|
490 |
+
|
491 |
+
logger.info("Saving prediction to persistent volume")
|
492 |
+
os.makedirs(
|
493 |
+
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
|
494 |
+
)
|
495 |
+
dump_predictions(
|
496 |
+
idx=idx,
|
497 |
+
response=pred,
|
498 |
+
label=label,
|
499 |
+
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
|
500 |
+
)
|
501 |
+
except Exception as e:
|
502 |
+
# Handle exceptions here
|
503 |
+
print(f"Error processing example {idx}: {e}")
|
504 |
+
|
505 |
+
|
506 |
+
def run_one_configuration(params: Optional[PARAMS] = None):
|
507 |
+
if not params:
|
508 |
+
params = read_parameters("../../parameters.yaml")
|
509 |
+
|
510 |
+
lang = params["selected_language"]
|
511 |
+
config = params["config"]
|
512 |
+
zero_shot = len(config["context"]) == 0
|
513 |
+
rouge1, rouge2, rougeL, normalized_ic_examples, batched_predictions = (
|
514 |
+
[],
|
515 |
+
[],
|
516 |
+
[],
|
517 |
+
[],
|
518 |
+
[],
|
519 |
+
)
|
520 |
+
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}_{config['output']}"
|
521 |
+
dataset_name = params["dataset_name"]
|
522 |
+
squad_metric = load("squad")
|
523 |
+
metric = params["metric"]
|
524 |
+
f1_sum = 0
|
525 |
+
em_sum = 0
|
526 |
+
avg_em = 0
|
527 |
+
avg_f1 = 0
|
528 |
+
preds = []
|
529 |
+
labels = []
|
530 |
+
f1s, ems = [], []
|
531 |
+
|
532 |
+
test_data = load_qa_dataset(
|
533 |
+
dataset_name=params["dataset_name"],
|
534 |
+
lang=lang,
|
535 |
+
split="validation" if params["dataset_name"] == "xquad" else "test",
|
536 |
+
limit=params["limit"],
|
537 |
+
)
|
538 |
+
|
539 |
+
for idx, test_example in (pbar := tqdm(enumerate(test_data))):
|
540 |
+
try:
|
541 |
+
instruction = create_instruction(
|
542 |
+
lang=config["prefix"], expected_output=config["output"]
|
543 |
+
)
|
544 |
+
text_example = {
|
545 |
+
"question": test_example["question"],
|
546 |
+
"context": test_example["context"],
|
547 |
+
"answers": test_example["answers"]["text"],
|
548 |
+
}
|
549 |
+
|
550 |
+
ic_examples = []
|
551 |
+
if not zero_shot:
|
552 |
+
ic_examples = choose_few_shot_examples(
|
553 |
+
train_dataset=test_data,
|
554 |
+
few_shot_size=len(config["context"]),
|
555 |
+
context=config["context"],
|
556 |
+
selection_criteria="random",
|
557 |
+
lang=params["selected_language"],
|
558 |
+
)
|
559 |
+
|
560 |
+
prompt, label = construct_prompt(
|
561 |
+
instruction=instruction,
|
562 |
+
test_example=text_example,
|
563 |
+
ic_examples=ic_examples,
|
564 |
+
zero_shot=zero_shot,
|
565 |
+
lang=lang,
|
566 |
+
config=config,
|
567 |
+
)
|
568 |
+
|
569 |
+
pred = mt0_completion(prompt=prompt)
|
570 |
+
print(pred)
|
571 |
+
|
572 |
+
logger.info("Saving prediction to persistent volume")
|
573 |
+
os.makedirs(
|
574 |
+
f"{params['response_logger_root']}" + f"{params['model']}" + f"/{lang}",
|
575 |
+
exist_ok=True,
|
576 |
+
)
|
577 |
+
dump_predictions(
|
578 |
+
idx=idx,
|
579 |
+
response=pred,
|
580 |
+
label=label,
|
581 |
+
response_logger_file=f"{params['response_logger_root']}"
|
582 |
+
+ f"/{params['model']}"
|
583 |
+
+ f"/{lang}/"
|
584 |
+
+ config_header
|
585 |
+
+ ".csv",
|
586 |
+
)
|
587 |
+
#
|
588 |
+
# normalized_prediction = normalize_answer(pred)
|
589 |
+
# batched_predictions.append(normalized_prediction)
|
590 |
+
#
|
591 |
+
# if config["output"] != params["selected_language"]:
|
592 |
+
# pred = _translate_prediction_to_output_language(
|
593 |
+
# prediction=normalized_prediction,
|
594 |
+
# prediction_language=config["output"],
|
595 |
+
# output_language=params["selected_language"],
|
596 |
+
# )
|
597 |
+
# print(
|
598 |
+
# f"Translated the prediciton from {config['output']} to {params['selected_language']}"
|
599 |
+
# )
|
600 |
+
#
|
601 |
+
# logger.info("Starting evaluation")
|
602 |
+
#
|
603 |
+
# if dataset_name == "xquad":
|
604 |
+
# prediction = {"prediction_text": pred, "id": test_example["id"]}
|
605 |
+
#
|
606 |
+
# reference = {}
|
607 |
+
# reference["answers"] = test_example["answers"]
|
608 |
+
# reference["id"] = test_example["id"]
|
609 |
+
# if reference["answers"]["text"][0] == "":
|
610 |
+
# reference["answers"]["text"] = []
|
611 |
+
# reference["answers"]["answer_start"] = []
|
612 |
+
#
|
613 |
+
# if params["metric"] == "squad":
|
614 |
+
# results = squad_metric.compute(
|
615 |
+
# predictions=[prediction], references=[reference]
|
616 |
+
# )
|
617 |
+
# else:
|
618 |
+
# results = squad_metric.compute(
|
619 |
+
# predictions=[prediction],
|
620 |
+
# references=[reference],
|
621 |
+
# no_answer_threshold=0.9,
|
622 |
+
# )
|
623 |
+
#
|
624 |
+
# f1_sum += results["f1"]
|
625 |
+
# if metric == "squad":
|
626 |
+
# em_sum += results["exact_match"]
|
627 |
+
# else:
|
628 |
+
# em_sum += results["exact"]
|
629 |
+
# avg_f1 = f1_sum / (idx + 1)
|
630 |
+
# avg_em = em_sum / (idx + 1)
|
631 |
+
#
|
632 |
+
# preds.append(prediction)
|
633 |
+
# labels.append(reference)
|
634 |
+
# f1s.append(results["f1"])
|
635 |
+
# if metric == "squad":
|
636 |
+
# ems.append(results["exact_match"])
|
637 |
+
# else:
|
638 |
+
# ems.append(results["exact"])
|
639 |
+
|
640 |
+
except Exception as e:
|
641 |
+
print(f"Found an exception {e}, continue to the next example")
|
642 |
+
continue
|
643 |
+
|
644 |
+
os.makedirs(f"{params['metrics_root']}" + f"/{params['model']}", exist_ok=True)
|
645 |
+
|
646 |
+
dump_metrics(
|
647 |
+
lang,
|
648 |
+
config,
|
649 |
+
avg_f1,
|
650 |
+
avg_em,
|
651 |
+
f"{params['metrics_root']}" + f"/{params['model']}" + f"/{lang}.csv",
|
652 |
+
)
|
653 |
+
|
654 |
+
|
655 |
+
# if __name__ == "__main__":
|
656 |
+
# run_one_configuration()
|
657 |
+
|
658 |
+
|
659 |
+
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
|
660 |
+
if not params:
|
661 |
+
params = read_parameters("../../parameters.yaml")
|
662 |
+
|
663 |
+
lang = params["selected_language"]
|
664 |
+
config = params["config"]
|
665 |
+
zero_shot = len(config["context"]) == 0
|
666 |
+
rouge1, rouge2, rougeL, normalized_ic_examples, batched_predictions = (
|
667 |
+
[],
|
668 |
+
[],
|
669 |
+
[],
|
670 |
+
[],
|
671 |
+
[],
|
672 |
+
)
|
673 |
+
if not zero:
|
674 |
+
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}_{config['output']}"
|
675 |
+
else:
|
676 |
+
config_header = f"{config['input']}_{config['prefix']}_zero_{config['output']}"
|
677 |
+
test_data = load_qa_dataset(
|
678 |
+
dataset_name=params["dataset_name"],
|
679 |
+
lang=lang,
|
680 |
+
split="validation" if params["dataset_name"] == "xquad" else "test",
|
681 |
+
limit=params["limit"],
|
682 |
+
)
|
683 |
+
|
684 |
+
# Initialize multiprocessing poosl
|
685 |
+
num_processes = mp.cpu_count() # Use number of available CPU cores
|
686 |
+
pool = mp.Pool(processes=10)
|
687 |
+
|
688 |
+
# Iterate over test_data using tqdm for progress tracking
|
689 |
+
for idx, test_example in tqdm(enumerate(test_data), total=len(test_data)):
|
690 |
+
# Apply asynchronous processing of each test example
|
691 |
+
pool.apply_async(
|
692 |
+
process_test_example,
|
693 |
+
args=(
|
694 |
+
test_data,
|
695 |
+
config_header,
|
696 |
+
idx,
|
697 |
+
test_example,
|
698 |
+
config,
|
699 |
+
zero_shot,
|
700 |
+
lang,
|
701 |
+
params,
|
702 |
+
),
|
703 |
+
)
|
704 |
+
|
705 |
+
# Close the pool and wait for all processes to finish
|
706 |
+
pool.close()
|
707 |
+
pool.join()
|
708 |
+
|
709 |
+
|
710 |
+
|
711 |
+
def construct_prompt(
|
712 |
+
instruction: str,
|
713 |
+
test_example: dict,
|
714 |
+
zero_shot: bool,
|
715 |
+
num_examples: int,
|
716 |
+
lang: str,
|
717 |
+
config: Dict[str, str],
|
718 |
+
dataset_name: str = 'xquad'
|
719 |
+
):
|
720 |
+
if not instruction:
|
721 |
+
instruction = create_instruction(lang, config['prefix'])
|
722 |
+
|
723 |
+
example_prompt = PromptTemplate(
|
724 |
+
input_variables=["context", "question", "answers"],
|
725 |
+
template="Context: {context} \n Question: {question} \n " "Answers: {answers}",
|
726 |
+
)
|
727 |
+
|
728 |
+
zero_shot_template = (
|
729 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
730 |
+
)
|
731 |
+
|
732 |
+
test_data = load_qa_dataset(dataset_name = dataset_name, lang=lang, split="test", limit=100)
|
733 |
+
|
734 |
+
print(test_data)
|
735 |
+
print(num_examples)
|
736 |
+
print(lang)
|
737 |
+
ic_examples = []
|
738 |
+
if not zero_shot:
|
739 |
+
|
740 |
+
ic_examples = choose_few_shot_examples(
|
741 |
+
train_dataset=test_data,
|
742 |
+
few_shot_size=num_examples,
|
743 |
+
context=[config["context"]] * num_examples,
|
744 |
+
selection_criteria="random",
|
745 |
+
lang=lang,
|
746 |
+
)
|
747 |
+
|
748 |
+
prompt = (
|
749 |
+
FewShotPromptTemplate(
|
750 |
+
examples=ic_examples,
|
751 |
+
prefix=instruction,
|
752 |
+
example_prompt=example_prompt,
|
753 |
+
suffix="<Context>: {context} \n <Question>: {question} \n Answers: ?",
|
754 |
+
input_variables=["question", "context"],
|
755 |
+
)
|
756 |
+
if not zero_shot
|
757 |
+
else PromptTemplate(
|
758 |
+
input_variables=["question", "context"], template=zero_shot_template
|
759 |
+
)
|
760 |
+
)
|
761 |
+
print("lang", lang)
|
762 |
+
print(config["input"] , lang)
|
763 |
+
if config["input"] != lang:
|
764 |
+
test_example = _translate_example(
|
765 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
766 |
+
)
|
767 |
+
|
768 |
+
return prompt.format(
|
769 |
+
question=test_example["question"], context=test_example["context"]
|
770 |
+
)
|
tasks/summarization.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from datasets import Dataset, load_dataset
|
5 |
+
from easygoogletranslate import EasyGoogleTranslate
|
6 |
+
from langchain.prompts import PromptTemplate, FewShotPromptTemplate
|
7 |
+
|
8 |
+
LANGUAGE_TO_SUFFIX = {
|
9 |
+
"chinese_simplified": "zh-CN",
|
10 |
+
"french": "fr",
|
11 |
+
"portuguese": "pt",
|
12 |
+
"english": "en",
|
13 |
+
"arabic": "ar",
|
14 |
+
"hindi": "hi",
|
15 |
+
"indonesian": "id",
|
16 |
+
"amharic": "am",
|
17 |
+
"bengali": "bn",
|
18 |
+
"burmese": "my",
|
19 |
+
"uzbek": "uz",
|
20 |
+
"nepali": "ne",
|
21 |
+
"japanese": "ja",
|
22 |
+
"spanish": "es",
|
23 |
+
"turkish": "tr",
|
24 |
+
"persian": "fa",
|
25 |
+
"azerbaijani": "az",
|
26 |
+
"korean": "ko",
|
27 |
+
}
|
28 |
+
|
29 |
+
def choose_few_shot_examples(
|
30 |
+
train_dataset: Dataset, few_shot_size: int, context: List[str], selection_criteria: str, lang: str,
|
31 |
+
) -> List[Dict[str, Union[str, int]]]:
|
32 |
+
|
33 |
+
selected_examples = []
|
34 |
+
|
35 |
+
example_idxs = []
|
36 |
+
if selection_criteria == "first_k":
|
37 |
+
example_idxs = list(range(few_shot_size))
|
38 |
+
elif selection_criteria == "random":
|
39 |
+
example_idxs = (
|
40 |
+
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
41 |
+
.astype(int)
|
42 |
+
.tolist()
|
43 |
+
)
|
44 |
+
|
45 |
+
ic_examples = [{'text': train_dataset[idx]['text'], 'summary': train_dataset[idx]['summary']} for idx in
|
46 |
+
example_idxs]
|
47 |
+
|
48 |
+
for idx, ic_language in enumerate(context):
|
49 |
+
selected_examples.append(ic_examples[idx]) if ic_language == lang else (
|
50 |
+
selected_examples.append(
|
51 |
+
_translate_example(example=ic_examples[idx], src_language=lang, target_language=ic_language)))
|
52 |
+
|
53 |
+
return selected_examples
|
54 |
+
|
55 |
+
|
56 |
+
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
57 |
+
translator = EasyGoogleTranslate(
|
58 |
+
source_language="en",
|
59 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
60 |
+
timeout=50,
|
61 |
+
)
|
62 |
+
return translator.translate(basic_instruction)
|
63 |
+
|
64 |
+
|
65 |
+
def _translate_example(example: Dict[str, str], src_language: str, target_language: str):
|
66 |
+
translator = EasyGoogleTranslate(source_language=LANGUAGE_TO_SUFFIX[src_language],
|
67 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
68 |
+
timeout=30)
|
69 |
+
try:
|
70 |
+
return {'text': translator.translate(example['text']), 'summary': ''}
|
71 |
+
except Exception as e:
|
72 |
+
print(e)
|
73 |
+
|
74 |
+
|
75 |
+
def create_instruction(lang: str, expected_output: str):
|
76 |
+
basic_instruction = (
|
77 |
+
f"Write a summary of the given <Text> \n The output should be in {expected_output} "
|
78 |
+
f"\n The output must be up to 2 sentences maximum!!!"
|
79 |
+
)
|
80 |
+
print(lang)
|
81 |
+
return (
|
82 |
+
basic_instruction
|
83 |
+
if expected_output == "english"
|
84 |
+
else _translate_instruction(basic_instruction, target_language=lang)
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
def load_xlsum_data(lang, split, limit = 5):
|
89 |
+
"""Loads the xlsum dataset"""
|
90 |
+
dataset = load_dataset("csebuetnlp/xlsum", lang)[split]
|
91 |
+
return dataset.select(range(limit))
|
92 |
+
|
93 |
+
|
94 |
+
def construct_prompt(
|
95 |
+
instruction: str,
|
96 |
+
test_example: dict,
|
97 |
+
zero_shot: bool,
|
98 |
+
dataset: str,
|
99 |
+
num_examples: int,
|
100 |
+
lang: str,
|
101 |
+
config: Dict[str, str],
|
102 |
+
):
|
103 |
+
if not instruction:
|
104 |
+
print(lang)
|
105 |
+
instruction = create_instruction(lang, config['prefix'])
|
106 |
+
|
107 |
+
example_prompt = PromptTemplate(
|
108 |
+
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
109 |
+
)
|
110 |
+
|
111 |
+
zero_shot_template = f"""{instruction}""" + "\n Input: {text} " ""
|
112 |
+
|
113 |
+
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
114 |
+
|
115 |
+
print(test_data)
|
116 |
+
print(num_examples)
|
117 |
+
print(lang)
|
118 |
+
ic_examples = []
|
119 |
+
if not zero_shot:
|
120 |
+
|
121 |
+
ic_examples = choose_few_shot_examples(
|
122 |
+
train_dataset=test_data,
|
123 |
+
few_shot_size=num_examples,
|
124 |
+
context=[config["context"]] * num_examples,
|
125 |
+
selection_criteria="random",
|
126 |
+
lang=lang,
|
127 |
+
)
|
128 |
+
|
129 |
+
prompt = (
|
130 |
+
FewShotPromptTemplate(
|
131 |
+
examples=ic_examples,
|
132 |
+
prefix=instruction,
|
133 |
+
example_prompt=example_prompt,
|
134 |
+
suffix="<Text>: {text}",
|
135 |
+
input_variables=["text"],
|
136 |
+
)
|
137 |
+
if not zero_shot
|
138 |
+
else PromptTemplate(input_variables=["text"], template=zero_shot_template)
|
139 |
+
)
|
140 |
+
|
141 |
+
print("lang", lang)
|
142 |
+
print(config["input"] , lang)
|
143 |
+
if config["input"] != lang:
|
144 |
+
test_example = _translate_example(
|
145 |
+
example=test_example, src_language=lang, target_language=config["input"]
|
146 |
+
)
|
147 |
+
|
148 |
+
print("test_example", prompt)
|
149 |
+
return prompt.format(text=test_example["text"])
|