File size: 22,952 Bytes
1899e23
acdf4b5
2eae6d2
79e1a94
 
acdf4b5
79e1a94
 
 
 
acdf4b5
 
79e1a94
c1d7828
79e1a94
 
 
 
 
acdf4b5
 
 
 
 
762ef5f
79e1a94
 
 
 
c1d7828
 
 
79e1a94
 
 
 
 
 
 
 
 
 
acdf4b5
 
 
 
 
79e1a94
 
 
 
 
 
 
 
 
 
 
 
 
acdf4b5
 
 
 
 
 
 
 
 
 
79e1a94
 
 
 
 
 
 
 
 
f3fa639
79e1a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eef69d
31a7918
9eef69d
31a7918
 
9eef69d
31a7918
9eef69d
31a7918
 
 
 
9eef69d
 
31a7918
9eef69d
 
 
79e1a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdf4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79e1a94
acdf4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79e1a94
 
 
acdf4b5
79e1a94
 
 
 
acdf4b5
 
 
 
 
 
 
 
 
 
 
 
79e1a94
acdf4b5
79e1a94
 
acdf4b5
79e1a94
 
 
acdf4b5
 
 
 
 
79e1a94
 
 
 
 
6191828
79e1a94
6191828
4160366
 
9eef69d
6191828
4160366
 
 
 
 
 
 
 
 
 
 
 
 
 
d82d421
 
 
 
 
93d356c
 
 
 
 
 
 
6191828
 
 
 
 
 
 
 
 
 
 
 
 
93d356c
 
4160366
9eef69d
 
8b840e9
 
9eef69d
3abb7ea
6191828
 
f3fa639
 
 
 
 
 
 
6191828
2eae6d2
3e082c6
 
 
 
6191828
3e082c6
 
 
 
 
 
b988e93
 
6191828
 
6046d47
6191828
 
 
 
6046d47
3e082c6
 
 
 
 
 
 
2eae6d2
6191828
 
79e1a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdf4b5
 
 
3e082c6
79e1a94
6191828
 
 
3e082c6
 
31a7918
b988e93
3e082c6
79e1a94
 
6046d47
 
6191828
6046d47
6191828
6046d47
 
 
6191828
 
 
 
 
 
3e082c6
6191828
 
3e082c6
6046d47
3e082c6
 
6046d47
6191828
 
 
 
 
6046d47
f75ce21
 
acdf4b5
6191828
 
 
f75ce21
 
79e1a94
 
 
f75ce21
 
 
 
 
79e1a94
f75ce21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#fnord23UFO

import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
from safetensors import safe_open
import os
import requests
import json
import math
import numpy as np
from sklearn.decomposition import PCA
import logging
import time
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
import spaces
import traceback
from graphviz import Digraph
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import functools


# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

logger.info(f"HF_TOKEN_GEMMA set: {'HF_TOKEN_GEMMA' in os.environ}")
logger.info(f"HF_TOKEN_EMBEDDINGS set: {'HF_TOKEN_EMBEDDINGS' in os.environ}")

class Config:
    def __init__(self):
        self.MODEL_NAME = "google/gemma-2b"
        self.ACCESS_TOKEN = os.environ.get("HF_TOKEN_GEMMA")
        self.EMBEDDINGS_TOKEN = os.environ.get("HF_TOKEN_EMBEDDINGS")
        self.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
        self.DTYPE = torch.float32
        self.TOPK = 5
        self.CUTOFF = 0.00001  # Cumulative probability cutoff for tree branches
        self.OUTPUT_LENGTH = 20
        self.SUB_TOKEN_ID = 23070  # Arbitrary token ID to overwrite with embedding
        self.LOG_BASE = 10

config = Config()

def load_tokenizer():
    try:
        logger.info(f"Attempting to load tokenizer with token: {config.ACCESS_TOKEN[:5]}...")
        tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME, token=config.ACCESS_TOKEN)
        logger.info("Tokenizer loaded successfully")
        return tokenizer
    except Exception as e:
        logger.error(f"Error loading tokenizer: {str(e)}")
        return None

def load_model():
    try:
        logger.info(f"Attempting to load model with token: {config.ACCESS_TOKEN[:5]}...")
        model = AutoModelForCausalLM.from_pretrained(config.MODEL_NAME, device_map="auto", token=config.ACCESS_TOKEN)
        logger.info("Model loaded successfully")
        return model
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        return None

def load_token_embeddings():
    try:
        logger.info(f"Attempting to load token embeddings with token: {config.EMBEDDINGS_TOKEN[:5]}...")
        embeddings_path = hf_hub_download(
            repo_id="mwatkins1970/gemma-2b-embeddings",
            filename="gemma_2b_embeddings.pt",
            token=config.EMBEDDINGS_TOKEN
        )
        logger.info(f"Embeddings downloaded to: {embeddings_path}")
        embeddings = torch.load(embeddings_path, map_location=config.DEVICE, weights_only=True)
        logger.info("Embeddings loaded successfully")
        return embeddings.to(dtype=config.DTYPE)
    except Exception as e:
        logger.error(f"Error loading token embeddings: {str(e)}")
        return None

def load_sae_weights(sae_name):
    start_time = time.time()
    base_url = 'https://huggingface.co/jbloom/Gemma-2b-Residual-Stream-SAEs/resolve/main/'
    
    sae_urls = {
        "Gemma-2B layer 6": "gemma_2b_blocks.6.hook_resid_post_16384_anthropic_fast_lr/sae_weights.safetensors",
        "Gemma-2B layer 0": "gemma_2b_blocks.0.hook_resid_post_16384_anthropic/sae_weights.safetensors",
        "Gemma-2B layer 10": "gemma_2b_blocks.10.hook_resid_post_16384/sae_weights.safetensors",
        "Gemma-2B layer 12": "gemma_2b_blocks.12.hook_resid_post_16384/sae_weights.safetensors"
    }
    
    if sae_name not in sae_urls:
        raise ValueError(f"Unknown SAE: {sae_name}")
    
    url = f'{base_url}{sae_urls[sae_name]}?download=true'
    local_filename = f'sae_{sae_name.replace(" ", "_").lower()}.safetensors'

    if not os.path.exists(local_filename):
        try:
            response = requests.get(url)
            response.raise_for_status()
            with open(local_filename, 'wb') as f:
                f.write(response.content)
            logger.info(f'SAE weights for {sae_name} downloaded successfully!')
        except requests.RequestException as e:
            logger.error(f"Failed to download SAE weights for {sae_name}: {str(e)}")
            return None, None

    try:
        with safe_open(local_filename, framework="pt") as f:
            w_dec = f.get_tensor("W_dec").to(device=config.DEVICE, dtype=config.DTYPE)
            w_enc = f.get_tensor("W_enc").to(device=config.DEVICE, dtype=config.DTYPE)
        
        logger.info(f"Successfully loaded weights for {sae_name}")
        logger.info(f"Time taken to load weights: {time.time() - start_time:.2f} seconds")
        return w_enc, w_dec
    except Exception as e:
        logger.error(f"Error loading SAE weights for {sae_name}: {str(e)}")
        return None, None

@torch.no_grad()
def create_feature_vector(w_enc, w_dec, feature_number, weight_type, token_centroid, use_token_centroid, scaling_factor):
    if weight_type == "encoder":
        feature_vector = w_enc[:, feature_number]
    else:
        feature_vector = w_dec[feature_number]

    if use_token_centroid:
        feature_vector = token_centroid + scaling_factor * (feature_vector - token_centroid) / torch.norm(feature_vector - token_centroid)
    
    return feature_vector

def perform_pca(_embeddings):
    try:
        logger.info(f"Starting PCA. Embeddings shape: {_embeddings.shape}")
        pca = PCA(n_components=1)
        embeddings_cpu = _embeddings.detach().cpu().numpy()
        logger.info(f"Embeddings converted to numpy. Shape: {embeddings_cpu.shape}")
        pca.fit(embeddings_cpu)
        logger.info("PCA fit completed")
        pca_direction = torch.tensor(pca.components_[0], dtype=config.DTYPE, device=config.DEVICE)
        logger.info(f"PCA direction calculated. Shape: {pca_direction.shape}")
        normalized_direction = F.normalize(pca_direction, p=2, dim=0)
        logger.info(f"PCA direction normalized. Shape: {normalized_direction.shape}")
        return normalized_direction
    except Exception as e:
        logger.error(f"Error in perform_pca: {str(e)}")
        logger.error(f"Embeddings stats - min: {_embeddings.min()}, max: {_embeddings.max()}, mean: {_embeddings.mean()}, std: {_embeddings.std()}")
        logger.error(traceback.format_exc())
        raise RuntimeError(f"PCA calculation failed: {str(e)}")

@torch.no_grad()
def create_ghost_token(_feature_vector, _token_centroid, _pca_direction, target_distance, pca_weight):
    feature_direction = F.normalize(_feature_vector - _token_centroid, p=2, dim=0)
    combined_direction = (1 - pca_weight) * feature_direction + pca_weight * _pca_direction
    combined_direction = F.normalize(combined_direction, p=2, dim=0)
    return _token_centroid + target_distance * combined_direction

@torch.no_grad()
def find_closest_tokens(_emb, _token_embeddings, _tokenizer, top_k=500, num_exp=1.4, denom_exp=1.0):
    token_centroid = torch.mean(_token_embeddings, dim=0)
    emb_norm = F.normalize(_emb.view(1, -1), p=2, dim=1)
    centroid_norm = F.normalize(token_centroid.view(1, -1), p=2, dim=1)
    normalized_embeddings = F.normalize(_token_embeddings, p=2, dim=1)
    
    similarities_emb = torch.mm(emb_norm, normalized_embeddings.t()).squeeze()
    similarities_centroid = torch.mm(centroid_norm, normalized_embeddings.t()).squeeze()
    
    distances_emb = torch.pow(1 - similarities_emb, num_exp)
    distances_centroid = torch.pow(1 - similarities_centroid, denom_exp)
    
    ratios = distances_emb / distances_centroid
    top_ratios, top_indices = torch.topk(ratios, k=top_k, largest=False)
    
    closest_tokens = [_tokenizer.decode([idx.item()]) for idx in top_indices]
    return list(zip(closest_tokens, top_ratios.tolist()))

def get_neuronpedia_url(layer, feature):
    return f"https://neuronpedia.org/gemma-2b/{layer}-res-jb/{feature}?embed=true&embedexplanation=true&embedplots=false&embedtest=false&height=300"

# New functions for tree generation and visualization
def update_token_embedding(model, token_id, new_embedding):
    new_embedding = new_embedding.to(model.get_input_embeddings().weight.device)
    model.get_input_embeddings().weight.data[token_id] = new_embedding

def produce_next_token_ids(input_ids, model, topk, sub_token_id):
    input_ids = input_ids.to(model.device)
    with torch.no_grad():
        outputs = model(input_ids)
        logits = outputs.logits
    last_logits = logits[:, -1, :]
    last_logits[:, sub_token_id] = float('-inf')
    softmax_probs = torch.softmax(last_logits, dim=-1)
    top_k_probs, top_k_ids = torch.topk(softmax_probs, k=topk, dim=-1)
    return top_k_ids[0], top_k_probs[0]

def build_def_tree(input_ids, data, base_prompt, model, tokenizer, config, depth=0, max_depth=25, cumulative_prob=1.0):
    if depth >= max_depth or cumulative_prob < config.CUTOFF:
        return

    current_prompt = tokenizer.decode(input_ids[0], skip_special_tokens=True)
    yield f"Depth {depth}: {current_prompt}      PROB: {cumulative_prob}\n"
    top_k_ids, top_k_probs = produce_next_token_ids(input_ids, model, config.TOPK, config.SUB_TOKEN_ID)

    for idx, token_id in enumerate(top_k_ids.tolist()):
        if token_id == config.SUB_TOKEN_ID:
            continue

        token_id_tensor = torch.tensor([token_id], dtype=torch.long).to(model.device)
        new_input_ids = torch.cat([input_ids, token_id_tensor.view(1, 1)], dim=-1)

        new_cumulative_prob = cumulative_prob * top_k_probs[idx].item()

        if new_cumulative_prob < config.CUTOFF:
            continue

        token_str = tokenizer.decode([token_id], skip_special_tokens=True)

        new_child = {
            "token_id": token_id,
            "token": token_str,
            "cumulative_prob": new_cumulative_prob,
            "children": []
        }
        data['children'].append(new_child)

        yield from build_def_tree(new_input_ids, new_child, base_prompt, model, tokenizer, config, depth=depth+1, max_depth=max_depth, cumulative_prob=new_cumulative_prob)

def generate_definition_tree(base_prompt, embedding, model, tokenizer, config):
    results_dict = {"token": "", "cumulative_prob": 1, "children": []}

    token_embedding = torch.unsqueeze(embedding, dim=0).to(model.device)
    update_token_embedding(model, config.SUB_TOKEN_ID, token_embedding)

    if hasattr(model, 'reset_cache'):
        model.reset_cache()

    input_ids = tokenizer.encode(base_prompt, return_tensors="pt").to(model.device)
    yield from build_def_tree(input_ids, results_dict, base_prompt, model, tokenizer, config)

    return results_dict

def find_max_min_cumulative_weight(node, current_max=0, current_min=float('inf')):
    current_max = max(current_max, node.get('cumulative_prob', 0))
    if node.get('cumulative_prob', 1) > 0:
        current_min = min(current_min, node.get('cumulative_prob', 1))
    for child in node.get('children', []):
        current_max, current_min = find_max_min_cumulative_weight(child, current_max, current_min)
    return current_max, current_min

def scale_edge_width(cumulative_weight, max_weight, min_weight, log_base, max_thickness=33, min_thickness=1):
    cumulative_weight = max(cumulative_weight, min_weight)
    log_weight = math.log(cumulative_weight, log_base) - math.log(min_weight, log_base)
    log_max = math.log(max_weight, log_base) - math.log(min_weight, log_base)
    amplified_weight = (log_weight / log_max) ** 2.5
    scaled_weight = (amplified_weight * (max_thickness - min_thickness)) + min_thickness
    return scaled_weight



def add_nodes_edges(dot, node, config, max_weight, min_weight, parent=None, is_root=True, depth=0, trim_cutoff=0):
    node_id = str(id(node))
    token = node.get('token', '').strip()
    cumulative_prob = node.get('cumulative_prob', 1)

    if cumulative_prob < trim_cutoff and not is_root:
        return

    if is_root or token:
        if parent and not is_root:
            edge_weight = scale_edge_width(cumulative_prob, max_weight, min_weight, config.LOG_BASE)
            dot.edge(parent, node_id, arrowhead='dot', arrowsize='1', color='darkblue', penwidth=str(edge_weight))

        label = "*" if is_root else token
        dot.node(node_id, label=label, shape='plaintext', fontsize="36", fontname='Helvetica')

        for child in node.get('children', []):
            add_nodes_edges(dot, child, config, max_weight, min_weight, parent=node_id, is_root=False, depth=depth+1, trim_cutoff=trim_cutoff)

def create_tree_diagram(data, config, max_weight, min_weight, trim_cutoff=0):
    dot = Digraph(comment='Definition Tree', format='png')
    dot.attr(rankdir='LR', size='5040,5000', margin='0.06', nodesep='0.06', ranksep='1', dpi='120', bgcolor='white')

    add_nodes_edges(dot, data, config, max_weight, min_weight, trim_cutoff=trim_cutoff)

    output = BytesIO()
    dot.render(outfile=output, format='png')
    output.seek(0)

    # Add white background
    with Image.open(output) as img:
        bg = Image.new("RGB", (img.width, 5000), (255, 255, 255))
        y_offset = (5000 - img.height) // 2
        bg.paste(img, (0, y_offset))
        final_output = BytesIO()
        bg.save(final_output, 'PNG')
        final_output.seek(0)

    return final_output

# Global variables to store loaded resources
tokenizer = None
model = None
token_embeddings = None
w_enc_dict = {}
w_dec_dict = {}

@functools.lru_cache(maxsize=None)
def cached_load_tokenizer():
    return load_tokenizer()

@functools.lru_cache(maxsize=None)
def cached_load_model():
    return load_model()

@functools.lru_cache(maxsize=None)
def cached_load_token_embeddings():
    return load_token_embeddings()

def initialize_resources():
    global tokenizer, model, token_embeddings
    
    logger.info("Initializing resources...")
    tokenizer = cached_load_tokenizer()
    if tokenizer is None:
        raise RuntimeError("Failed to load tokenizer.")
    
    model = cached_load_model()
    if model is None:
        raise RuntimeError("Failed to load model.")
    
    token_embeddings = cached_load_token_embeddings()
    if token_embeddings is None:
        raise RuntimeError("Failed to load token embeddings.")
    
    logger.info("Resources initialized successfully.")


@spaces.GPU
def process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=False):
    global w_enc_dict, w_dec_dict, model, tokenizer, token_embeddings
    
    try:
        logger.info(f"Processing input: SAE={selected_sae}, feature_number={feature_number}, mode={mode}")

        # Load the SAE weights if they are not already loaded
        if selected_sae not in w_enc_dict or selected_sae not in w_dec_dict:
            logger.info("Loading SAE weights for {}".format(selected_sae))
            w_enc, w_dec = load_sae_weights(selected_sae)
            if w_enc is None or w_dec is None:
                error_message = f"Failed to load SAE weights for {selected_sae}. Please try a different SAE or check your connection."
                logger.error(error_message)
                return error_message, None
            w_enc_dict[selected_sae] = w_enc
            w_dec_dict[selected_sae] = w_dec
        else:
            w_enc, w_dec = w_enc_dict[selected_sae], w_dec_dict[selected_sae]
        
        # Create the feature vector
        token_centroid = torch.mean(token_embeddings, dim=0)
        feature_vector = create_feature_vector(w_enc, w_dec, int(feature_number), weight_type, token_centroid, use_token_centroid, scaling_factor)
        logger.info(f"Feature vector created. Shape: {feature_vector.shape}")
        
        if mode == "cosine distance token lists":
            logger.info("Generating cosine distance token list")
            closest_tokens_with_values = find_closest_tokens(
                feature_vector, token_embeddings, tokenizer, 
                top_k=500, num_exp=num_exp, denom_exp=denom_exp
            )
            
            if top_500:
                # Generate the top 500 list
                result = "Top 500 list:\n"
                result += "\n".join([f"{token!r}: {value:.4f}" for token, value in closest_tokens_with_values])
                logger.info("Returning top 500 list")
                return result, None
            else:
                # Generate the top 100 list
                token_list = [token for token, _ in closest_tokens_with_values[:100]]
                result = f"100 tokens whose embeddings produce the smallest ratio:\n\n"
                result += f"[{', '.join(repr(token) for token in token_list)}]\n"
                logger.info("Returning top 100 tokens")
                return result, None
        
        return "Mode not recognized or not implemented in this step.", None
    
    except Exception as e:
        logger.error(f"Error in process_input: {str(e)}")
        return f"Error: {str(e)}", None





def trim_tree(trim_cutoff, tree_data):
    max_weight, min_weight = find_max_min_cumulative_weight(tree_data)
    trimmed_tree_image = create_tree_diagram(tree_data, config, max_weight, min_weight, trim_cutoff=float(trim_cutoff))
    return trimmed_tree_image




def gradio_interface():
    def update_visibility(mode):
        if mode == "definition tree generation":
            return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible(False))

    def update_neuronpedia(selected_sae, feature_number):
        layer_number = int(selected_sae.split()[-1])
        url = get_neuronpedia_url(layer_number, feature_number)
        return f'<iframe src="{url}" width="100%" height="300px"></iframe>'

    @spaces.GPU
    def update_output(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode):
        # Call process_input without generating the top 500 list initially
        return process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=False)

    @spaces.GPU
    def generate_top_500(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode):
        # Call process_input with top_500=True to generate the full list
        return process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=True)

    def trim_tree(trim_cutoff, tree_data):
        if tree_data is None:
            return None
        max_weight, min_weight = find_max_min_cumulative_weight(tree_data)
        trimmed_tree_image = create_tree_diagram(tree_data, config, max_weight, min_weight, trim_cutoff=float(trim_cutoff))
        return trimmed_tree_image

    with gr.Blocks() as demo:
        gr.Markdown("# Gemma-2B SAE Feature Explorer (almost there?)")

        with gr.Row():
            with gr.Column(scale=2):
                selected_sae = gr.Dropdown(choices=["Gemma-2B layer 0", "Gemma-2B layer 6", "Gemma-2B layer 10", "Gemma-2B layer 12"], label="Select SAE")
                feature_number = gr.Number(label="Select feature number", minimum=0, maximum=16383, value=0)
                
                mode = gr.Radio(
                    choices=["cosine distance token lists", "definition tree generation"],
                    label="Select mode",
                    value="cosine distance token lists"
                )
                
                weight_type = gr.Radio(["encoder", "decoder"], label="Select weight type for feature vector construction", value="encoder")
                use_token_centroid = gr.Checkbox(label="Use token centroid offset", value=True)
                scaling_factor = gr.Slider(minimum=0.1, maximum=10.0, value=3.8, label="Scaling factor (3.8 is mean distance from token embeddings to token centroid)")
                num_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.4, label="Numerator exponent m")
                denom_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, label="Denominator exponent n")
                use_pca = gr.Checkbox(label="Introduce first PCA component")
                pca_weight = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="PCA weight")
            
            with gr.Column(scale=3):
                generate_btn = gr.Button("Generate Output")
                progress = gr.Progress()
                output_text = gr.Textbox(label="Output", lines=20)
                output_image = gr.Image(label="Tree Diagram", visible=False)
                
                generate_top_500_btn = gr.Button("Generate Top 500 Tokens and Power Ratios", visible=False)
                output_500_text = gr.Textbox(label="Top 500 Output", lines=20, visible=False)

                trim_slider = gr.Slider(minimum=0.00001, maximum=0.1, value=0.00001, label="Trim cutoff for cumulative probability", visible=False)
                trim_btn = gr.Button("Trim Tree", visible=False)

        tree_data_state = gr.State()
        neuronpedia_html = gr.HTML(label="Neuronpedia")

        inputs = [selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode]

        generate_btn.click(
            update_output,
            inputs=inputs,
            outputs=[output_text, output_image],
            show_progress="full"
        )

        generate_top_500_btn.click(
            generate_top_500,
            inputs=inputs,
            outputs=[output_500_text],
            show_progress="full"
        )
        
        trim_btn.click(trim_tree, inputs=[trim_slider, tree_data_state], outputs=[output_image])

        mode.change(update_visibility, inputs=[mode], outputs=[output_image, trim_slider, trim_btn])
            
        selected_sae.change(update_neuronpedia, inputs=[selected_sae, feature_number], outputs=[neuronpedia_html])
        feature_number.change(update_neuronpedia, inputs=[selected_sae, feature_number], outputs=[neuronpedia_html])

        output_text.change(
            lambda text: (gr.update(visible=True), gr.update(visible=True)) if "100 tokens" in text else (gr.update(visible(False)), gr.update(visible(False))),
            inputs=[output_text],
            outputs=[generate_top_500_btn, output_500_text]
        )

    return demo





if __name__ == "__main__":
    try:
        logger.info("Starting application initialization...")
        initialize_resources()
        logger.info("Creating Gradio interface...")
        iface = gradio_interface()
        logger.info("Launching Gradio interface...")
        iface.launch()
        logger.info("Gradio interface launched successfully")
    except Exception as e:
        logger.error(f"Error during application startup: {str(e)}")
        logger.error(traceback.format_exc())