Spaces:
Sleeping
Sleeping
File size: 22,952 Bytes
1899e23 acdf4b5 2eae6d2 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 c1d7828 79e1a94 acdf4b5 762ef5f 79e1a94 c1d7828 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 f3fa639 79e1a94 9eef69d 31a7918 9eef69d 31a7918 9eef69d 31a7918 9eef69d 31a7918 9eef69d 31a7918 9eef69d 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 acdf4b5 79e1a94 6191828 79e1a94 6191828 4160366 9eef69d 6191828 4160366 d82d421 93d356c 6191828 93d356c 4160366 9eef69d 8b840e9 9eef69d 3abb7ea 6191828 f3fa639 6191828 2eae6d2 3e082c6 6191828 3e082c6 b988e93 6191828 6046d47 6191828 6046d47 3e082c6 2eae6d2 6191828 79e1a94 acdf4b5 3e082c6 79e1a94 6191828 3e082c6 31a7918 b988e93 3e082c6 79e1a94 6046d47 6191828 6046d47 6191828 6046d47 6191828 3e082c6 6191828 3e082c6 6046d47 3e082c6 6046d47 6191828 6046d47 f75ce21 acdf4b5 6191828 f75ce21 79e1a94 f75ce21 79e1a94 f75ce21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
#fnord23UFO
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
from safetensors import safe_open
import os
import requests
import json
import math
import numpy as np
from sklearn.decomposition import PCA
import logging
import time
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
import spaces
import traceback
from graphviz import Digraph
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import functools
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.info(f"HF_TOKEN_GEMMA set: {'HF_TOKEN_GEMMA' in os.environ}")
logger.info(f"HF_TOKEN_EMBEDDINGS set: {'HF_TOKEN_EMBEDDINGS' in os.environ}")
class Config:
def __init__(self):
self.MODEL_NAME = "google/gemma-2b"
self.ACCESS_TOKEN = os.environ.get("HF_TOKEN_GEMMA")
self.EMBEDDINGS_TOKEN = os.environ.get("HF_TOKEN_EMBEDDINGS")
self.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
self.DTYPE = torch.float32
self.TOPK = 5
self.CUTOFF = 0.00001 # Cumulative probability cutoff for tree branches
self.OUTPUT_LENGTH = 20
self.SUB_TOKEN_ID = 23070 # Arbitrary token ID to overwrite with embedding
self.LOG_BASE = 10
config = Config()
def load_tokenizer():
try:
logger.info(f"Attempting to load tokenizer with token: {config.ACCESS_TOKEN[:5]}...")
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME, token=config.ACCESS_TOKEN)
logger.info("Tokenizer loaded successfully")
return tokenizer
except Exception as e:
logger.error(f"Error loading tokenizer: {str(e)}")
return None
def load_model():
try:
logger.info(f"Attempting to load model with token: {config.ACCESS_TOKEN[:5]}...")
model = AutoModelForCausalLM.from_pretrained(config.MODEL_NAME, device_map="auto", token=config.ACCESS_TOKEN)
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return None
def load_token_embeddings():
try:
logger.info(f"Attempting to load token embeddings with token: {config.EMBEDDINGS_TOKEN[:5]}...")
embeddings_path = hf_hub_download(
repo_id="mwatkins1970/gemma-2b-embeddings",
filename="gemma_2b_embeddings.pt",
token=config.EMBEDDINGS_TOKEN
)
logger.info(f"Embeddings downloaded to: {embeddings_path}")
embeddings = torch.load(embeddings_path, map_location=config.DEVICE, weights_only=True)
logger.info("Embeddings loaded successfully")
return embeddings.to(dtype=config.DTYPE)
except Exception as e:
logger.error(f"Error loading token embeddings: {str(e)}")
return None
def load_sae_weights(sae_name):
start_time = time.time()
base_url = 'https://huggingface.co/jbloom/Gemma-2b-Residual-Stream-SAEs/resolve/main/'
sae_urls = {
"Gemma-2B layer 6": "gemma_2b_blocks.6.hook_resid_post_16384_anthropic_fast_lr/sae_weights.safetensors",
"Gemma-2B layer 0": "gemma_2b_blocks.0.hook_resid_post_16384_anthropic/sae_weights.safetensors",
"Gemma-2B layer 10": "gemma_2b_blocks.10.hook_resid_post_16384/sae_weights.safetensors",
"Gemma-2B layer 12": "gemma_2b_blocks.12.hook_resid_post_16384/sae_weights.safetensors"
}
if sae_name not in sae_urls:
raise ValueError(f"Unknown SAE: {sae_name}")
url = f'{base_url}{sae_urls[sae_name]}?download=true'
local_filename = f'sae_{sae_name.replace(" ", "_").lower()}.safetensors'
if not os.path.exists(local_filename):
try:
response = requests.get(url)
response.raise_for_status()
with open(local_filename, 'wb') as f:
f.write(response.content)
logger.info(f'SAE weights for {sae_name} downloaded successfully!')
except requests.RequestException as e:
logger.error(f"Failed to download SAE weights for {sae_name}: {str(e)}")
return None, None
try:
with safe_open(local_filename, framework="pt") as f:
w_dec = f.get_tensor("W_dec").to(device=config.DEVICE, dtype=config.DTYPE)
w_enc = f.get_tensor("W_enc").to(device=config.DEVICE, dtype=config.DTYPE)
logger.info(f"Successfully loaded weights for {sae_name}")
logger.info(f"Time taken to load weights: {time.time() - start_time:.2f} seconds")
return w_enc, w_dec
except Exception as e:
logger.error(f"Error loading SAE weights for {sae_name}: {str(e)}")
return None, None
@torch.no_grad()
def create_feature_vector(w_enc, w_dec, feature_number, weight_type, token_centroid, use_token_centroid, scaling_factor):
if weight_type == "encoder":
feature_vector = w_enc[:, feature_number]
else:
feature_vector = w_dec[feature_number]
if use_token_centroid:
feature_vector = token_centroid + scaling_factor * (feature_vector - token_centroid) / torch.norm(feature_vector - token_centroid)
return feature_vector
def perform_pca(_embeddings):
try:
logger.info(f"Starting PCA. Embeddings shape: {_embeddings.shape}")
pca = PCA(n_components=1)
embeddings_cpu = _embeddings.detach().cpu().numpy()
logger.info(f"Embeddings converted to numpy. Shape: {embeddings_cpu.shape}")
pca.fit(embeddings_cpu)
logger.info("PCA fit completed")
pca_direction = torch.tensor(pca.components_[0], dtype=config.DTYPE, device=config.DEVICE)
logger.info(f"PCA direction calculated. Shape: {pca_direction.shape}")
normalized_direction = F.normalize(pca_direction, p=2, dim=0)
logger.info(f"PCA direction normalized. Shape: {normalized_direction.shape}")
return normalized_direction
except Exception as e:
logger.error(f"Error in perform_pca: {str(e)}")
logger.error(f"Embeddings stats - min: {_embeddings.min()}, max: {_embeddings.max()}, mean: {_embeddings.mean()}, std: {_embeddings.std()}")
logger.error(traceback.format_exc())
raise RuntimeError(f"PCA calculation failed: {str(e)}")
@torch.no_grad()
def create_ghost_token(_feature_vector, _token_centroid, _pca_direction, target_distance, pca_weight):
feature_direction = F.normalize(_feature_vector - _token_centroid, p=2, dim=0)
combined_direction = (1 - pca_weight) * feature_direction + pca_weight * _pca_direction
combined_direction = F.normalize(combined_direction, p=2, dim=0)
return _token_centroid + target_distance * combined_direction
@torch.no_grad()
def find_closest_tokens(_emb, _token_embeddings, _tokenizer, top_k=500, num_exp=1.4, denom_exp=1.0):
token_centroid = torch.mean(_token_embeddings, dim=0)
emb_norm = F.normalize(_emb.view(1, -1), p=2, dim=1)
centroid_norm = F.normalize(token_centroid.view(1, -1), p=2, dim=1)
normalized_embeddings = F.normalize(_token_embeddings, p=2, dim=1)
similarities_emb = torch.mm(emb_norm, normalized_embeddings.t()).squeeze()
similarities_centroid = torch.mm(centroid_norm, normalized_embeddings.t()).squeeze()
distances_emb = torch.pow(1 - similarities_emb, num_exp)
distances_centroid = torch.pow(1 - similarities_centroid, denom_exp)
ratios = distances_emb / distances_centroid
top_ratios, top_indices = torch.topk(ratios, k=top_k, largest=False)
closest_tokens = [_tokenizer.decode([idx.item()]) for idx in top_indices]
return list(zip(closest_tokens, top_ratios.tolist()))
def get_neuronpedia_url(layer, feature):
return f"https://neuronpedia.org/gemma-2b/{layer}-res-jb/{feature}?embed=true&embedexplanation=true&embedplots=false&embedtest=false&height=300"
# New functions for tree generation and visualization
def update_token_embedding(model, token_id, new_embedding):
new_embedding = new_embedding.to(model.get_input_embeddings().weight.device)
model.get_input_embeddings().weight.data[token_id] = new_embedding
def produce_next_token_ids(input_ids, model, topk, sub_token_id):
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
last_logits = logits[:, -1, :]
last_logits[:, sub_token_id] = float('-inf')
softmax_probs = torch.softmax(last_logits, dim=-1)
top_k_probs, top_k_ids = torch.topk(softmax_probs, k=topk, dim=-1)
return top_k_ids[0], top_k_probs[0]
def build_def_tree(input_ids, data, base_prompt, model, tokenizer, config, depth=0, max_depth=25, cumulative_prob=1.0):
if depth >= max_depth or cumulative_prob < config.CUTOFF:
return
current_prompt = tokenizer.decode(input_ids[0], skip_special_tokens=True)
yield f"Depth {depth}: {current_prompt} PROB: {cumulative_prob}\n"
top_k_ids, top_k_probs = produce_next_token_ids(input_ids, model, config.TOPK, config.SUB_TOKEN_ID)
for idx, token_id in enumerate(top_k_ids.tolist()):
if token_id == config.SUB_TOKEN_ID:
continue
token_id_tensor = torch.tensor([token_id], dtype=torch.long).to(model.device)
new_input_ids = torch.cat([input_ids, token_id_tensor.view(1, 1)], dim=-1)
new_cumulative_prob = cumulative_prob * top_k_probs[idx].item()
if new_cumulative_prob < config.CUTOFF:
continue
token_str = tokenizer.decode([token_id], skip_special_tokens=True)
new_child = {
"token_id": token_id,
"token": token_str,
"cumulative_prob": new_cumulative_prob,
"children": []
}
data['children'].append(new_child)
yield from build_def_tree(new_input_ids, new_child, base_prompt, model, tokenizer, config, depth=depth+1, max_depth=max_depth, cumulative_prob=new_cumulative_prob)
def generate_definition_tree(base_prompt, embedding, model, tokenizer, config):
results_dict = {"token": "", "cumulative_prob": 1, "children": []}
token_embedding = torch.unsqueeze(embedding, dim=0).to(model.device)
update_token_embedding(model, config.SUB_TOKEN_ID, token_embedding)
if hasattr(model, 'reset_cache'):
model.reset_cache()
input_ids = tokenizer.encode(base_prompt, return_tensors="pt").to(model.device)
yield from build_def_tree(input_ids, results_dict, base_prompt, model, tokenizer, config)
return results_dict
def find_max_min_cumulative_weight(node, current_max=0, current_min=float('inf')):
current_max = max(current_max, node.get('cumulative_prob', 0))
if node.get('cumulative_prob', 1) > 0:
current_min = min(current_min, node.get('cumulative_prob', 1))
for child in node.get('children', []):
current_max, current_min = find_max_min_cumulative_weight(child, current_max, current_min)
return current_max, current_min
def scale_edge_width(cumulative_weight, max_weight, min_weight, log_base, max_thickness=33, min_thickness=1):
cumulative_weight = max(cumulative_weight, min_weight)
log_weight = math.log(cumulative_weight, log_base) - math.log(min_weight, log_base)
log_max = math.log(max_weight, log_base) - math.log(min_weight, log_base)
amplified_weight = (log_weight / log_max) ** 2.5
scaled_weight = (amplified_weight * (max_thickness - min_thickness)) + min_thickness
return scaled_weight
def add_nodes_edges(dot, node, config, max_weight, min_weight, parent=None, is_root=True, depth=0, trim_cutoff=0):
node_id = str(id(node))
token = node.get('token', '').strip()
cumulative_prob = node.get('cumulative_prob', 1)
if cumulative_prob < trim_cutoff and not is_root:
return
if is_root or token:
if parent and not is_root:
edge_weight = scale_edge_width(cumulative_prob, max_weight, min_weight, config.LOG_BASE)
dot.edge(parent, node_id, arrowhead='dot', arrowsize='1', color='darkblue', penwidth=str(edge_weight))
label = "*" if is_root else token
dot.node(node_id, label=label, shape='plaintext', fontsize="36", fontname='Helvetica')
for child in node.get('children', []):
add_nodes_edges(dot, child, config, max_weight, min_weight, parent=node_id, is_root=False, depth=depth+1, trim_cutoff=trim_cutoff)
def create_tree_diagram(data, config, max_weight, min_weight, trim_cutoff=0):
dot = Digraph(comment='Definition Tree', format='png')
dot.attr(rankdir='LR', size='5040,5000', margin='0.06', nodesep='0.06', ranksep='1', dpi='120', bgcolor='white')
add_nodes_edges(dot, data, config, max_weight, min_weight, trim_cutoff=trim_cutoff)
output = BytesIO()
dot.render(outfile=output, format='png')
output.seek(0)
# Add white background
with Image.open(output) as img:
bg = Image.new("RGB", (img.width, 5000), (255, 255, 255))
y_offset = (5000 - img.height) // 2
bg.paste(img, (0, y_offset))
final_output = BytesIO()
bg.save(final_output, 'PNG')
final_output.seek(0)
return final_output
# Global variables to store loaded resources
tokenizer = None
model = None
token_embeddings = None
w_enc_dict = {}
w_dec_dict = {}
@functools.lru_cache(maxsize=None)
def cached_load_tokenizer():
return load_tokenizer()
@functools.lru_cache(maxsize=None)
def cached_load_model():
return load_model()
@functools.lru_cache(maxsize=None)
def cached_load_token_embeddings():
return load_token_embeddings()
def initialize_resources():
global tokenizer, model, token_embeddings
logger.info("Initializing resources...")
tokenizer = cached_load_tokenizer()
if tokenizer is None:
raise RuntimeError("Failed to load tokenizer.")
model = cached_load_model()
if model is None:
raise RuntimeError("Failed to load model.")
token_embeddings = cached_load_token_embeddings()
if token_embeddings is None:
raise RuntimeError("Failed to load token embeddings.")
logger.info("Resources initialized successfully.")
@spaces.GPU
def process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=False):
global w_enc_dict, w_dec_dict, model, tokenizer, token_embeddings
try:
logger.info(f"Processing input: SAE={selected_sae}, feature_number={feature_number}, mode={mode}")
# Load the SAE weights if they are not already loaded
if selected_sae not in w_enc_dict or selected_sae not in w_dec_dict:
logger.info("Loading SAE weights for {}".format(selected_sae))
w_enc, w_dec = load_sae_weights(selected_sae)
if w_enc is None or w_dec is None:
error_message = f"Failed to load SAE weights for {selected_sae}. Please try a different SAE or check your connection."
logger.error(error_message)
return error_message, None
w_enc_dict[selected_sae] = w_enc
w_dec_dict[selected_sae] = w_dec
else:
w_enc, w_dec = w_enc_dict[selected_sae], w_dec_dict[selected_sae]
# Create the feature vector
token_centroid = torch.mean(token_embeddings, dim=0)
feature_vector = create_feature_vector(w_enc, w_dec, int(feature_number), weight_type, token_centroid, use_token_centroid, scaling_factor)
logger.info(f"Feature vector created. Shape: {feature_vector.shape}")
if mode == "cosine distance token lists":
logger.info("Generating cosine distance token list")
closest_tokens_with_values = find_closest_tokens(
feature_vector, token_embeddings, tokenizer,
top_k=500, num_exp=num_exp, denom_exp=denom_exp
)
if top_500:
# Generate the top 500 list
result = "Top 500 list:\n"
result += "\n".join([f"{token!r}: {value:.4f}" for token, value in closest_tokens_with_values])
logger.info("Returning top 500 list")
return result, None
else:
# Generate the top 100 list
token_list = [token for token, _ in closest_tokens_with_values[:100]]
result = f"100 tokens whose embeddings produce the smallest ratio:\n\n"
result += f"[{', '.join(repr(token) for token in token_list)}]\n"
logger.info("Returning top 100 tokens")
return result, None
return "Mode not recognized or not implemented in this step.", None
except Exception as e:
logger.error(f"Error in process_input: {str(e)}")
return f"Error: {str(e)}", None
def trim_tree(trim_cutoff, tree_data):
max_weight, min_weight = find_max_min_cumulative_weight(tree_data)
trimmed_tree_image = create_tree_diagram(tree_data, config, max_weight, min_weight, trim_cutoff=float(trim_cutoff))
return trimmed_tree_image
def gradio_interface():
def update_visibility(mode):
if mode == "definition tree generation":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible(False))
def update_neuronpedia(selected_sae, feature_number):
layer_number = int(selected_sae.split()[-1])
url = get_neuronpedia_url(layer_number, feature_number)
return f'<iframe src="{url}" width="100%" height="300px"></iframe>'
@spaces.GPU
def update_output(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode):
# Call process_input without generating the top 500 list initially
return process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=False)
@spaces.GPU
def generate_top_500(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode):
# Call process_input with top_500=True to generate the full list
return process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode, top_500=True)
def trim_tree(trim_cutoff, tree_data):
if tree_data is None:
return None
max_weight, min_weight = find_max_min_cumulative_weight(tree_data)
trimmed_tree_image = create_tree_diagram(tree_data, config, max_weight, min_weight, trim_cutoff=float(trim_cutoff))
return trimmed_tree_image
with gr.Blocks() as demo:
gr.Markdown("# Gemma-2B SAE Feature Explorer (almost there?)")
with gr.Row():
with gr.Column(scale=2):
selected_sae = gr.Dropdown(choices=["Gemma-2B layer 0", "Gemma-2B layer 6", "Gemma-2B layer 10", "Gemma-2B layer 12"], label="Select SAE")
feature_number = gr.Number(label="Select feature number", minimum=0, maximum=16383, value=0)
mode = gr.Radio(
choices=["cosine distance token lists", "definition tree generation"],
label="Select mode",
value="cosine distance token lists"
)
weight_type = gr.Radio(["encoder", "decoder"], label="Select weight type for feature vector construction", value="encoder")
use_token_centroid = gr.Checkbox(label="Use token centroid offset", value=True)
scaling_factor = gr.Slider(minimum=0.1, maximum=10.0, value=3.8, label="Scaling factor (3.8 is mean distance from token embeddings to token centroid)")
num_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.4, label="Numerator exponent m")
denom_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, label="Denominator exponent n")
use_pca = gr.Checkbox(label="Introduce first PCA component")
pca_weight = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="PCA weight")
with gr.Column(scale=3):
generate_btn = gr.Button("Generate Output")
progress = gr.Progress()
output_text = gr.Textbox(label="Output", lines=20)
output_image = gr.Image(label="Tree Diagram", visible=False)
generate_top_500_btn = gr.Button("Generate Top 500 Tokens and Power Ratios", visible=False)
output_500_text = gr.Textbox(label="Top 500 Output", lines=20, visible=False)
trim_slider = gr.Slider(minimum=0.00001, maximum=0.1, value=0.00001, label="Trim cutoff for cumulative probability", visible=False)
trim_btn = gr.Button("Trim Tree", visible=False)
tree_data_state = gr.State()
neuronpedia_html = gr.HTML(label="Neuronpedia")
inputs = [selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp, mode]
generate_btn.click(
update_output,
inputs=inputs,
outputs=[output_text, output_image],
show_progress="full"
)
generate_top_500_btn.click(
generate_top_500,
inputs=inputs,
outputs=[output_500_text],
show_progress="full"
)
trim_btn.click(trim_tree, inputs=[trim_slider, tree_data_state], outputs=[output_image])
mode.change(update_visibility, inputs=[mode], outputs=[output_image, trim_slider, trim_btn])
selected_sae.change(update_neuronpedia, inputs=[selected_sae, feature_number], outputs=[neuronpedia_html])
feature_number.change(update_neuronpedia, inputs=[selected_sae, feature_number], outputs=[neuronpedia_html])
output_text.change(
lambda text: (gr.update(visible=True), gr.update(visible=True)) if "100 tokens" in text else (gr.update(visible(False)), gr.update(visible(False))),
inputs=[output_text],
outputs=[generate_top_500_btn, output_500_text]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application initialization...")
initialize_resources()
logger.info("Creating Gradio interface...")
iface = gradio_interface()
logger.info("Launching Gradio interface...")
iface.launch()
logger.info("Gradio interface launched successfully")
except Exception as e:
logger.error(f"Error during application startup: {str(e)}")
logger.error(traceback.format_exc()) |