Spaces:
Sleeping
Sleeping
Nu Appleblossom
commited on
Commit
·
c1d7828
1
Parent(s):
c1d81b1
Initial application file + requirements
Browse files- app.py +205 -8
- requirements.txt +8 -0
app.py
CHANGED
@@ -1,14 +1,211 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@spaces.GPU
|
9 |
-
def
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from safetensors import safe_open
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
import json
|
9 |
+
from sklearn.decomposition import PCA
|
10 |
+
import logging
|
11 |
+
import time
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
import spaces
|
15 |
+
|
16 |
+
# Load environment variables
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
# Set up logging
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# Configuration
|
24 |
+
class Config:
|
25 |
+
def __init__(self):
|
26 |
+
self.MODEL_NAME = "google/gemma-2b"
|
27 |
+
self.ACCESS_TOKEN = os.getenv('HF_ACCESS_TOKEN')
|
28 |
+
self.DEVICE = "cpu" # Will be updated to "cuda" when GPU is available
|
29 |
+
self.DTYPE = torch.float32
|
30 |
+
|
31 |
+
config = Config()
|
32 |
+
|
33 |
+
def load_tokenizer():
|
34 |
+
try:
|
35 |
+
return AutoTokenizer.from_pretrained(config.MODEL_NAME, token=config.ACCESS_TOKEN)
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Error loading tokenizer: {str(e)}")
|
38 |
+
return None
|
39 |
+
|
40 |
+
def load_token_embeddings():
|
41 |
+
try:
|
42 |
+
embeddings_path = hf_hub_download(
|
43 |
+
repo_id="mwatkins1970/gemma-2b-embeddings",
|
44 |
+
filename="gemma_2b_embeddings.pt",
|
45 |
+
token=os.getenv("HF_ACCESS_TOKEN")
|
46 |
+
)
|
47 |
+
embeddings = torch.load(embeddings_path, map_location=config.DEVICE)
|
48 |
+
return embeddings.to(dtype=config.DTYPE)
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Error loading token embeddings: {str(e)}")
|
51 |
+
return None
|
52 |
+
|
53 |
+
def load_sae_weights(sae_name):
|
54 |
+
start_time = time.time()
|
55 |
+
base_url = 'https://huggingface.co/jbloom/Gemma-2b-Residual-Stream-SAEs/resolve/main/'
|
56 |
+
|
57 |
+
sae_urls = {
|
58 |
+
"Gemma-2B layer 6": "gemma_2b_blocks.6.hook_resid_post_16384_anthropic_fast_lr/sae_weights.safetensors",
|
59 |
+
"Gemma-2B layer 0": "gemma_2b_blocks.0.hook_resid_post_16384_anthropic/sae_weights.safetensors",
|
60 |
+
"Gemma-2B layer 10": "gemma_2b_blocks.10.hook_resid_post_16384/sae_weights.safetensors",
|
61 |
+
"Gemma-2B layer 12": "gemma_2b_blocks.12.hook_resid_post_16384/sae_weights.safetensors"
|
62 |
+
}
|
63 |
+
|
64 |
+
if sae_name not in sae_urls:
|
65 |
+
raise ValueError(f"Unknown SAE: {sae_name}")
|
66 |
+
|
67 |
+
url = f'{base_url}{sae_urls[sae_name]}?download=true'
|
68 |
+
local_filename = f'sae_{sae_name.replace(" ", "_").lower()}.safetensors'
|
69 |
|
70 |
+
if not os.path.exists(local_filename):
|
71 |
+
try:
|
72 |
+
response = requests.get(url)
|
73 |
+
response.raise_for_status()
|
74 |
+
with open(local_filename, 'wb') as f:
|
75 |
+
f.write(response.content)
|
76 |
+
logger.info(f'SAE weights for {sae_name} downloaded successfully!')
|
77 |
+
except requests.RequestException as e:
|
78 |
+
logger.error(f"Failed to download SAE weights for {sae_name}: {str(e)}")
|
79 |
+
return None, None
|
80 |
+
|
81 |
+
try:
|
82 |
+
with safe_open(local_filename, framework="pt") as f:
|
83 |
+
w_dec = f.get_tensor("W_dec").to(device=config.DEVICE, dtype=config.DTYPE)
|
84 |
+
w_enc = f.get_tensor("W_enc").to(device=config.DEVICE, dtype=config.DTYPE)
|
85 |
+
|
86 |
+
logger.info(f"Successfully loaded weights for {sae_name}")
|
87 |
+
logger.info(f"Time taken to load weights: {time.time() - start_time:.2f} seconds")
|
88 |
+
return w_enc, w_dec
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"Error loading SAE weights for {sae_name}: {str(e)}")
|
91 |
+
return None, None
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
def create_feature_vector(w_enc, w_dec, feature_number, weight_type, token_centroid, use_token_centroid, scaling_factor):
|
95 |
+
if weight_type == "encoder":
|
96 |
+
feature_vector = w_enc[:, feature_number]
|
97 |
+
else:
|
98 |
+
feature_vector = w_dec[feature_number]
|
99 |
+
|
100 |
+
if use_token_centroid:
|
101 |
+
feature_vector = token_centroid + scaling_factor * (feature_vector - token_centroid) / torch.norm(feature_vector - token_centroid)
|
102 |
+
|
103 |
+
return feature_vector
|
104 |
+
|
105 |
+
def perform_pca(_embeddings):
|
106 |
+
pca = PCA(n_components=1)
|
107 |
+
pca.fit(_embeddings.cpu().numpy())
|
108 |
+
pca_direction = torch.tensor(pca.components_[0], dtype=config.DTYPE, device=config.DEVICE)
|
109 |
+
return F.normalize(pca_direction, p=2, dim=0)
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def create_ghost_token(_feature_vector, _token_centroid, _pca_direction, target_distance, pca_weight):
|
113 |
+
feature_direction = F.normalize(_feature_vector - _token_centroid, p=2, dim=0)
|
114 |
+
combined_direction = (1 - pca_weight) * feature_direction + pca_weight * _pca_direction
|
115 |
+
combined_direction = F.normalize(combined_direction, p=2, dim=0)
|
116 |
+
return _token_centroid + target_distance * combined_direction
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def find_closest_tokens(_emb, _token_embeddings, _tokenizer, top_k=500, num_exp=1.4, denom_exp=1.0):
|
120 |
+
token_centroid = torch.mean(_token_embeddings, dim=0)
|
121 |
+
emb_norm = F.normalize(_emb.view(1, -1), p=2, dim=1)
|
122 |
+
centroid_norm = F.normalize(token_centroid.view(1, -1), p=2, dim=1)
|
123 |
+
normalized_embeddings = F.normalize(_token_embeddings, p=2, dim=1)
|
124 |
+
|
125 |
+
similarities_emb = torch.mm(emb_norm, normalized_embeddings.t()).squeeze()
|
126 |
+
similarities_centroid = torch.mm(centroid_norm, normalized_embeddings.t()).squeeze()
|
127 |
+
|
128 |
+
distances_emb = torch.pow(1 - similarities_emb, num_exp)
|
129 |
+
distances_centroid = torch.pow(1 - similarities_centroid, denom_exp)
|
130 |
+
|
131 |
+
ratios = distances_emb / distances_centroid
|
132 |
+
top_ratios, top_indices = torch.topk(ratios, k=top_k, largest=False)
|
133 |
+
|
134 |
+
closest_tokens = [_tokenizer.decode([idx.item()]) for idx in top_indices]
|
135 |
+
return list(zip(closest_tokens, top_ratios.tolist()))
|
136 |
+
|
137 |
+
def get_neuronpedia_url(layer, feature):
|
138 |
+
return f"https://neuronpedia.org/gemma-2b/{layer}-res-jb/{feature}?embed=true&embedexplanation=true&embedplots=false&embedtest=false&height=300"
|
139 |
+
|
140 |
+
# Global variables to store loaded resources
|
141 |
+
tokenizer = None
|
142 |
+
token_embeddings = None
|
143 |
+
w_enc_dict = {}
|
144 |
+
w_dec_dict = {}
|
145 |
|
146 |
@spaces.GPU
|
147 |
+
def process_input(selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp):
|
148 |
+
global tokenizer, token_embeddings, w_enc_dict, w_dec_dict
|
149 |
+
|
150 |
+
if tokenizer is None:
|
151 |
+
tokenizer = load_tokenizer()
|
152 |
+
if token_embeddings is None:
|
153 |
+
token_embeddings = load_token_embeddings()
|
154 |
+
|
155 |
+
if selected_sae not in w_enc_dict or selected_sae not in w_dec_dict:
|
156 |
+
w_enc, w_dec = load_sae_weights(selected_sae)
|
157 |
+
w_enc_dict[selected_sae] = w_enc
|
158 |
+
w_dec_dict[selected_sae] = w_dec
|
159 |
+
else:
|
160 |
+
w_enc, w_dec = w_enc_dict[selected_sae], w_dec_dict[selected_sae]
|
161 |
+
|
162 |
+
if w_enc is None or w_dec is None:
|
163 |
+
return "Failed to load SAE weights. Please try selecting a different SAE or rerun the app."
|
164 |
+
|
165 |
+
token_centroid = torch.mean(token_embeddings, dim=0)
|
166 |
+
feature_vector = create_feature_vector(w_enc, w_dec, feature_number, weight_type, token_centroid, use_token_centroid, scaling_factor)
|
167 |
+
|
168 |
+
if use_pca:
|
169 |
+
pca_direction = perform_pca(token_embeddings)
|
170 |
+
feature_vector = create_ghost_token(feature_vector, token_centroid, pca_direction, scaling_factor, pca_weight)
|
171 |
+
|
172 |
+
closest_tokens_with_values = find_closest_tokens(
|
173 |
+
feature_vector, token_embeddings, tokenizer,
|
174 |
+
top_k=500, num_exp=num_exp, denom_exp=denom_exp
|
175 |
+
)
|
176 |
+
|
177 |
+
token_list = [token for token, _ in closest_tokens_with_values]
|
178 |
+
result = f"100 tokens whose embeddings produce the smallest ratio:\n\n"
|
179 |
+
result += f"[{', '.join(repr(token) for token in token_list[:100])}]\n\n"
|
180 |
+
result += "Top 500 list:\n"
|
181 |
+
result += "\n".join([f"{token!r}: {value:.4f}" for token, value in closest_tokens_with_values])
|
182 |
+
|
183 |
+
return result
|
184 |
+
|
185 |
+
def gradio_interface():
|
186 |
+
with gr.Blocks() as demo:
|
187 |
+
gr.Markdown("# SAE Feature Explorer")
|
188 |
+
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
selected_sae = gr.Dropdown(choices=["Gemma-2B layer 0", "Gemma-2B layer 6", "Gemma-2B layer 10", "Gemma-2B layer 12"], label="Select SAE")
|
192 |
+
feature_number = gr.Number(label="Select feature number", minimum=0, maximum=16383, value=0)
|
193 |
+
weight_type = gr.Radio(["encoder", "decoder"], label="Select weight type for feature vector")
|
194 |
+
use_token_centroid = gr.Checkbox(label="Use token centroid offset", value=True)
|
195 |
+
scaling_factor = gr.Slider(minimum=0.1, maximum=10.0, value=3.8, label="Scaling factor (3.8 is mean distance from token centroid)")
|
196 |
+
use_pca = gr.Checkbox(label="Introduce first PCA component")
|
197 |
+
pca_weight = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="PCA weight")
|
198 |
+
num_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.4, label="Numerator exponent m")
|
199 |
+
denom_exp = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, label="Denominator exponent n")
|
200 |
+
|
201 |
+
with gr.Column():
|
202 |
+
output = gr.Textbox(label="Results")
|
203 |
+
|
204 |
+
submit_btn = gr.Button("Generate")
|
205 |
+
submit_btn.click(process_input, inputs=[selected_sae, feature_number, weight_type, use_token_centroid, scaling_factor, use_pca, pca_weight, num_exp, denom_exp], outputs=output)
|
206 |
+
|
207 |
+
return demo
|
208 |
|
209 |
+
if __name__ == "__main__":
|
210 |
+
iface = gradio_interface()
|
211 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
safetensors
|
5 |
+
requests
|
6 |
+
scikit-learn
|
7 |
+
python-dotenv
|
8 |
+
huggingface_hub
|