File size: 6,348 Bytes
f6086aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
import torch

"""Override Chatbot.postprocess"""

def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y

gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(input, image_path, chatbot, max_length, top_p, temperature, history):
    if image_path is None:
        return [(input, "图片不能为空。请重新上传图片并重试。")], []
    chatbot.append((parse_text(input), ""))
    with torch.no_grad():
        for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p,
                                               temperature=temperature):
            chatbot[-1] = (parse_text(input), parse_text(response))

            yield chatbot, history


def predict_new_image(image_path, chatbot, max_length, top_p, temperature):
    input, history = "描述这张图片。", []
    chatbot.append((parse_text(input), ""))
    with torch.no_grad():
        for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length,
                                               top_p=top_p,
                                               temperature=temperature):
            chatbot[-1] = (parse_text(input), parse_text(response))

            yield chatbot, history


def reset_user_input():
    return gr.update(value='')


def reset_state():
    return None, [], []


DESCRIPTION = '''<h1 align="center"><a href="https://github.com/THUDM/VisualGLM-6B">VisualGLM</a></h1>'''
MAINTENANCE_NOTICE = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM-6B">https://github.com/THUDM/VisualGLM-6B</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.'

def main(args):
    global model, tokenizer
    tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
    if args.quant in [4, 8]:
        model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).quantize(args.quant).half().cuda()
    else:
        model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
    model = model.eval()

    with gr.Blocks(css='style.css') as demo:
        gr.HTML(DESCRIPTION)
        
        with gr.Row():
            with gr.Column(scale=2):
                image_path = gr.Image(type="filepath", label="Image Prompt", value=None).style(height=504)
            with gr.Column(scale=4):
                chatbot = gr.Chatbot().style(height=480)
        with gr.Row():
            with gr.Column(scale=2, min_width=100):
                max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
                top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True)
                temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)
            with gr.Column(scale=4):
                with gr.Box():
                    with gr.Row():
                        with gr.Column(scale=2):
                            user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=4).style(
                                container=False)
                        with gr.Column(scale=1, min_width=64):
                            submitBtn = gr.Button("Submit", variant="primary")
                            emptyBtn = gr.Button("Clear History")
                    gr.Markdown(MAINTENANCE_NOTICE + '\n' + NOTES)
        history = gr.State([])
        

        submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history],
                        show_progress=True)
        image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history],
                        show_progress=True)
        image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
        submitBtn.click(reset_user_input, [], [user_input])
        emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True)

        print(gr.__version__)

        demo.queue().launch(share=args.share, inbrowser=True, server_name='0.0.0.0', server_port=8080)

if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--quant", choices=[8, 4], type=int, default=None)
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()
    main(args)