Spaces:
Runtime error
Runtime error
File size: 6,348 Bytes
f6086aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
import torch
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, image_path, chatbot, max_length, top_p, temperature, history):
if image_path is None:
return [(input, "图片不能为空。请重新上传图片并重试。")], []
chatbot.append((parse_text(input), ""))
with torch.no_grad():
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def predict_new_image(image_path, chatbot, max_length, top_p, temperature):
input, history = "描述这张图片。", []
chatbot.append((parse_text(input), ""))
with torch.no_grad():
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length,
top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return None, [], []
DESCRIPTION = '''<h1 align="center"><a href="https://github.com/THUDM/VisualGLM-6B">VisualGLM</a></h1>'''
MAINTENANCE_NOTICE = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM-6B">https://github.com/THUDM/VisualGLM-6B</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.'
def main(args):
global model, tokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
if args.quant in [4, 8]:
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).quantize(args.quant).half().cuda()
else:
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
with gr.Blocks(css='style.css') as demo:
gr.HTML(DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
image_path = gr.Image(type="filepath", label="Image Prompt", value=None).style(height=504)
with gr.Column(scale=4):
chatbot = gr.Chatbot().style(height=480)
with gr.Row():
with gr.Column(scale=2, min_width=100):
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)
with gr.Column(scale=4):
with gr.Box():
with gr.Row():
with gr.Column(scale=2):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=4).style(
container=False)
with gr.Column(scale=1, min_width=64):
submitBtn = gr.Button("Submit", variant="primary")
emptyBtn = gr.Button("Clear History")
gr.Markdown(MAINTENANCE_NOTICE + '\n' + NOTES)
history = gr.State([])
submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history],
show_progress=True)
image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
print(gr.__version__)
demo.queue().launch(share=args.share, inbrowser=True, server_name='0.0.0.0', server_port=8080)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--quant", choices=[8, 4], type=int, default=None)
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
main(args)
|