Spaces:
Runtime error
Runtime error
File size: 13,298 Bytes
b18ff48 ddad699 b18ff48 ddad699 a9dfd5a ddad699 56049a8 ddad699 4a368e8 b56dcdb 4a368e8 ddad699 b18ff48 ddad699 56049a8 ddad699 d69d28e ddad699 22e38c7 b56dcdb 7c17938 ddad699 22e38c7 ddad699 7c17938 ddad699 56049a8 7c17938 ddad699 7c17938 ddad699 ce39e0b ddad699 7c17938 ddad699 ce39e0b ddad699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
from git.repo.base import Repo
from os.path import exists as path_exists
if not (path_exists(f"stylegan_xl")):
Repo.clone_from("https://github.com/autonomousvision/stylegan_xl", "stylegan_xl")
import sys
sys.path.append('./CLIP')
sys.path.append('./stylegan_xl')
import io
import os, time, glob
import pickle
import shutil
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
import requests
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import clip
import unicodedata
import re
from tqdm import tqdm
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from IPython.display import display
from einops import rearrange
import dnnlib
import legacy
import subprocess
torch.cuda.empty_cache()
device = torch.device('cuda:0')
print('Using device:', device, file=sys.stderr)
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def fetch_model(url_or_path,network_name):
print(network_name)
torch.hub.download_url_to_file(f'{url_or_path}',f'{network_name}')
print(os.listdir())
def slugify(value, allow_unicode=False):
"""
Taken from https://github.com/django/django/blob/master/django/utils/text.py
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
dashes to single dashes. Remove characters that aren't alphanumerics,
underscores, or hyphens. Convert to lowercase. Also strip leading and
trailing whitespace, dashes, and underscores.
"""
value = str(value)
if allow_unicode:
value = unicodedata.normalize('NFKC', value)
else:
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub(r'[^\w\s-]', '', value.lower())
return re.sub(r'[-\s]+', '-', value).strip('-_')
def norm1(prompt):
"Normalize to the unit sphere."
return prompt / prompt.square().sum(dim=-1,keepdim=True).sqrt()
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def prompts_dist_loss(x, targets, loss):
if len(targets) == 1: # Keeps consitent results vs previous method for single objective guidance
return loss(x, targets[0])
distances = [loss(x, target) for target in targets]
return torch.stack(distances, dim=-1).sum(dim=-1)
class MakeCutouts(torch.nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
make_cutouts = MakeCutouts(224, 32, 0.5)
def embed_image(image):
n = image.shape[0]
cutouts = make_cutouts(image)
embeds = clip_model.embed_cutout(cutouts)
embeds = rearrange(embeds, '(cc n) c -> cc n c', n=n)
return embeds
def embed_url(url):
image = Image.open(fetch(url)).convert('RGB')
return embed_image(TF.to_tensor(image).to(device).unsqueeze(0)).mean(0).squeeze(0)
class CLIP(object):
def __init__(self):
clip_model = "ViT-B/32"
self.model, _ = clip.load(clip_model)
self.model = self.model.requires_grad_(False)
self.normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
@torch.no_grad()
def embed_text(self, prompt):
"Normalized clip text embedding."
return norm1(self.model.encode_text(clip.tokenize(prompt).to(device)).float())
def embed_cutout(self, image):
"Normalized clip image embedding."
return norm1(self.model.encode_image(self.normalize(image)))
clip_model = CLIP()
#@markdown #**Model selection** 🎭
Models = ["imagenet256", "Pokemon", "FFHQ"]
#@markdown ---
network_url = {
"imagenet256":"https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet256.pkl",
#"Imagenet512": "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet512.pkl",
#"Imagenet1024": "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet1024.pkl",
"Pokemon": "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl",
"FFHQ": "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl"
}
for Model in Models:
network_name = network_url[Model].split("/")[-1]
if not (path_exists(network_name)):
fetch_model(network_url[Model],network_name)
def load_current_model(current_model="imagenet256.pkl"):
with dnnlib.util.open_url(current_model) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device)
zs = torch.randn([10000, G.mapping.z_dim], device=device)
cs = torch.zeros([10000, G.mapping.c_dim], device=device)
for i in range(cs.shape[0]):
cs[i,i//10]=1
w_stds = G.mapping(zs, cs)
w_stds = w_stds.reshape(10, 1000, G.num_ws, -1)
w_stds=w_stds.std(0).mean(0)[0]
w_all_classes_avg = G.mapping.w_avg.mean(0)
return(G,w_stds,w_all_classes_avg)
G, w_stds, w_all_classes_avg = load_current_model()
previousModel = 'imagenet256'
def run(prompt,steps,model):
global G, w_stds, w_all_classes_avg, previousModel
if(model == 'imagenet256' and previousModel != 'imagenet256'):
G, w_stds, w_all_classes_avg = load_current_model('imagenet256.pkl')
#if(model == 'imagenet512' and previousModel != 'imagenet512'):
# G, w_stds, w_all_classes_avg = load_current_model('imagenet512.pkl')
#elif(model=='imagenet1024' and previousModel != 'imagenet1024'):
# G, w_stds, w_all_classes_avg = load_current_model('imagenet1024.pkl')
elif(model=='pokemon256' and previousModel != 'pokemon256'):
G, w_stds, w_all_classes_avg = load_current_model('pokemon256.pkl')
elif(model=='ffhq256' and previousModel != 'ffhq256'):
G, w_stds, w_all_classes_avg = load_current_model('ffhq256.pkl')
previousModel = model
texts = prompt
steps = steps
seed = -1 # @param {type:"number"}
# @markdown ---
if seed == -1:
seed = np.random.randint(0, 9e9)
print(f"Your random seed is: {seed}")
texts = [frase.strip() for frase in texts.split("|") if frase]
targets = [clip_model.embed_text(text) for text in texts]
tf = Compose(
[
# Resize(224),
lambda x: torch.clamp((x + 1) / 2, min=0, max=1),
]
)
initial_batch = 2 # actually that will be multiplied by initial_image_steps
initial_image_steps = 8
def get_image(timestring):
os.makedirs(f"samples/{timestring}", exist_ok=True)
torch.manual_seed(seed)
with torch.no_grad():
qs = []
losses = []
for _ in range(initial_image_steps):
a = torch.randn([initial_batch, 512], device=device) * 0.4 + w_stds * 0.4
q = (a - w_all_classes_avg) / w_stds
images = G.synthesis(
(q * w_stds + w_all_classes_avg).unsqueeze(1).repeat([1, G.num_ws, 1])
)
embeds = embed_image(images.add(1).div(2))
loss = prompts_dist_loss(embeds, targets, spherical_dist_loss).mean(0)
i = torch.argmin(loss)
qs.append(q[i])
losses.append(loss[i])
qs = torch.stack(qs)
losses = torch.stack(losses)
i = torch.argmin(losses)
q = qs[i].unsqueeze(0).repeat([G.num_ws, 1]).requires_grad_()
# Sampling loop
q_ema = q
print(q.shape)
opt = torch.optim.AdamW([q], lr=0.05, betas=(0.0, 0.999), weight_decay=0.025)
loop = tqdm(range(steps))
for i in loop:
opt.zero_grad()
w = q * w_stds
image = G.synthesis((q * w_stds + w_all_classes_avg)[None], noise_mode="const")
embed = embed_image(image.add(1).div(2))
loss = prompts_dist_loss(embed, targets, spherical_dist_loss).mean()
loss.backward()
opt.step()
loop.set_postfix(loss=loss.item(), q_magnitude=q.std().item())
q_ema = q_ema * 0.98 + q * 0.02
image = G.synthesis(
(q_ema * w_stds + w_all_classes_avg)[None], noise_mode="const"
)
pil_image = TF.to_pil_image(image[0].add(1).div(2).clamp(0, 1))
pil_image.save(f"samples/{timestring}/{i:04}.jpg")
if (i+1) % steps == 0:
#/usr/bin/
subprocess.call(['ffmpeg', '-r', '60', '-i', f'samples/{timestring}/%04d.jpg', '-vcodec', 'libx264', '-crf','18','-pix_fmt','yuv420p', f'{timestring}.mp4'])
shutil.rmtree(f"samples/{timestring}")
pil_image = TF.to_pil_image(image[0].add(1).div(2).clamp(0, 1))
return(pil_image, f'{timestring}.mp4')
try:
timestring = time.strftime("%Y%m%d%H%M%S")
image,video = get_image(timestring)
return([image,video])
except KeyboardInterrupt:
pass
image = gr.outputs.Image(type="pil", label="Your imge")
video = gr.outputs.Video(type="mp4", label="Your video")
css = ".output-image{height: 528px !important} .output-video{height: 528px !important}"
iface = gr.Interface(fn=run, inputs=[
gr.inputs.Textbox(label="Prompt",default="Hong Kong by Studio Ghibli"),
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=300,maximum=500,minimum=10,step=1),
#gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Horizontal"),
gr.inputs.Dropdown(label="Model", choices=["imagenet256","Pokemon256", "ffhq256"], default="imagenet256")
#gr.inputs.Radio(label="Height", choices=[32,64,128,256,512],default=256),
#gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4),
#gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0),
#gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1),
],
outputs=[image,video],
css=css,
title="Generate images from text with StyleGAN XL + CLIP",
description="<div>By typing a prompt and pressing submit you generate images based on it. <a href='https://github.com/autonomousvision/stylegan_xl' target='_blank'>StyleGAN XL</a> is a general purpose StyleGAN, and it is CLIP Guidance notebook was created by <a href='https://github.com/CasualGANPapers/StyleGANXL-CLIP' target='_blank'>ryudrigo and ouhenio</a>, and optimised by <a href='https://twitter.com/rivershavewings' target='_blank'>Katherine Crowson</a> This Spaces Gradio UI to the model was assembled by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div>",
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The models are meant to be used for research purposes, such as this one.</div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>")
iface.launch(enable_queue=True) |