File size: 11,570 Bytes
7e93a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f8f46
7e93a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f8f46
7e93a0e
 
 
 
 
 
 
 
a3f8f46
7e93a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f8f46
7e93a0e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from typing import Callable, Iterable, Union

import torch
from einops import rearrange, repeat

from sgm.modules.diffusionmodules.model import (
    XFORMERS_IS_AVAILABLE,
    AttnBlock,
    Decoder,
    MemoryEfficientAttnBlock,
    ResnetBlock,
)
from sgm.modules.diffusionmodules.openaimodel import ResBlock, timestep_embedding
from sgm.modules.video_attention import VideoTransformerBlock
from sgm.util import partialclass


class VideoResBlock(ResnetBlock):
    def __init__(
        self,
        out_channels,
        *args,
        dropout=0.0,
        video_kernel_size=3,
        alpha=0.0,
        merge_strategy="learned",
        **kwargs,
    ):
        super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
        if video_kernel_size is None:
            video_kernel_size = [3, 1, 1]
        self.time_stack = ResBlock(
            channels=out_channels,
            emb_channels=0,
            dropout=dropout,
            dims=3,
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=False,
            skip_t_emb=True,
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def get_alpha(self, bs):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError()

    def forward(self, x, temb, skip_video=False, timesteps=None):
        if timesteps is None:
            timesteps = self.timesteps

        b, c, h, w = x.shape

        x = super().forward(x, temb)

        if not skip_video:
            x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = self.time_stack(x, temb)

            alpha = self.get_alpha(bs=b // timesteps)
            x = alpha * x + (1.0 - alpha) * x_mix

            x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


class AE3DConv(torch.nn.Conv2d):
    def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
        super().__init__(in_channels, out_channels, *args, **kwargs)
        if isinstance(video_kernel_size, Iterable):
            padding = [int(k // 2) for k in video_kernel_size]
        else:
            padding = int(video_kernel_size // 2)

        self.time_mix_conv = torch.nn.Conv3d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=video_kernel_size,
            padding=padding,
        )

    def forward(self, input, timesteps, skip_video=False):
        x = super().forward(input)
        if skip_video:
            return x
        x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
        x = self.time_mix_conv(x)
        return rearrange(x, "b c t h w -> (b t) c h w")


class VideoBlock(AttnBlock):
    def __init__(
        self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
    ):
        super().__init__(in_channels)
        # no context, single headed, as in base class
        self.time_mix_block = VideoTransformerBlock(
            dim=in_channels,
            n_heads=1,
            d_head=in_channels,
            checkpoint=False,
            ff_in=True,
            attn_mode="softmax",
        )

        time_embed_dim = self.in_channels * 4
        self.video_time_embed = torch.nn.Sequential(
            torch.nn.Linear(self.in_channels, time_embed_dim),
            torch.nn.SiLU(),
            torch.nn.Linear(time_embed_dim, self.in_channels),
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def forward(self, x, timesteps, skip_video=False):
        if skip_video:
            return super().forward(x)

        x_in = x
        x = self.attention(x)
        h, w = x.shape[2:]
        x = rearrange(x, "b c h w -> b (h w) c")

        x_mix = x
        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
        emb = self.video_time_embed(t_emb)  # b, n_channels
        emb = emb[:, None, :]
        x_mix = x_mix + emb

        alpha = self.get_alpha()
        x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
        x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge

        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)

        return x_in + x

    def get_alpha(
        self,
    ):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")


class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
    def __init__(
        self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
    ):
        super().__init__(in_channels)
        # no context, single headed, as in base class
        self.time_mix_block = VideoTransformerBlock(
            dim=in_channels,
            n_heads=1,
            d_head=in_channels,
            checkpoint=False,
            ff_in=True,
            attn_mode="softmax-xformers",
        )

        time_embed_dim = self.in_channels * 4
        self.video_time_embed = torch.nn.Sequential(
            torch.nn.Linear(self.in_channels, time_embed_dim),
            torch.nn.SiLU(),
            torch.nn.Linear(time_embed_dim, self.in_channels),
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def forward(self, x, timesteps, skip_time_block=False):
        if skip_time_block:
            return super().forward(x)

        x_in = x
        x = self.attention(x)
        h, w = x.shape[2:]
        x = rearrange(x, "b c h w -> b (h w) c")

        x_mix = x
        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
        emb = self.video_time_embed(t_emb)  # b, n_channels
        emb = emb[:, None, :]
        x_mix = x_mix + emb

        alpha = self.get_alpha()
        x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
        x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge

        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)

        return x_in + x

    def get_alpha(
        self,
    ):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")


def make_time_attn(
    in_channels,
    attn_type="vanilla",
    attn_kwargs=None,
    alpha: float = 0,
    merge_strategy: str = "learned",
):
    assert attn_type in [
        "vanilla",
        "vanilla-xformers",
    ], f"attn_type {attn_type} not supported for spatio-temporal attention"
    print(
        f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
    )
    if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
        print(
            f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
            f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
        )
        attn_type = "vanilla"

    if attn_type == "vanilla":
        assert attn_kwargs is None
        return partialclass(
            VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
        )
    elif attn_type == "vanilla-xformers":
        print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
        return partialclass(
            MemoryEfficientVideoBlock,
            in_channels,
            alpha=alpha,
            merge_strategy=merge_strategy,
        )
    else:
        return NotImplementedError()


class Conv2DWrapper(torch.nn.Conv2d):
    def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
        return super().forward(input)


class VideoDecoder(Decoder):
    available_time_modes = ["all", "conv-only", "attn-only"]

    def __init__(
        self,
        *args,
        video_kernel_size: Union[int, list] = 3,
        alpha: float = 0.0,
        merge_strategy: str = "learned",
        time_mode: str = "conv-only",
        **kwargs,
    ):
        self.video_kernel_size = video_kernel_size
        self.alpha = alpha
        self.merge_strategy = merge_strategy
        self.time_mode = time_mode
        assert (
            self.time_mode in self.available_time_modes
        ), f"time_mode parameter has to be in {self.available_time_modes}"
        super().__init__(*args, **kwargs)

    def get_last_layer(self, skip_time_mix=False, **kwargs):
        if self.time_mode == "attn-only":
            raise NotImplementedError("TODO")
        else:
            return (
                self.conv_out.time_mix_conv.weight
                if not skip_time_mix
                else self.conv_out.weight
            )

    def _make_attn(self) -> Callable:
        if self.time_mode not in ["conv-only", "only-last-conv"]:
            return partialclass(
                make_time_attn,
                alpha=self.alpha,
                merge_strategy=self.merge_strategy,
            )
        else:
            return super()._make_attn()

    def _make_conv(self) -> Callable:
        if self.time_mode != "attn-only":
            return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
        else:
            return Conv2DWrapper

    def _make_resblock(self) -> Callable:
        if self.time_mode not in ["attn-only", "only-last-conv"]:
            return partialclass(
                VideoResBlock,
                video_kernel_size=self.video_kernel_size,
                alpha=self.alpha,
                merge_strategy=self.merge_strategy,
            )
        else:
            return super()._make_resblock()