File size: 2,992 Bytes
48fa639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import requests\n",
    "\n",
    "! wget https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download -O weights.zip\n",
    "! unzip -d weights -j weights.zip\n",
    "from models.clipseg import CLIPDensePredT\n",
    "from PIL import Image\n",
    "from torchvision import transforms\n",
    "from matplotlib import pyplot as plt\n",
    "\n",
    "# load model\n",
    "model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)\n",
    "model.eval();\n",
    "\n",
    "# non-strict, because we only stored decoder weights (not CLIP weights)\n",
    "model.load_state_dict(torch.load('weights/rd64-uni.pth', map_location=torch.device('cpu')), strict=False);"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Load and normalize `example_image.jpg`. You can also load through an URL."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load and normalize image\n",
    "input_image = Image.open('example_image.jpg')\n",
    "\n",
    "# or load from URL...\n",
    "# image_url = 'https://farm5.staticflickr.com/4141/4856248695_03475782dc_z.jpg'\n",
    "# input_image = Image.open(requests.get(image_url, stream=True).raw)\n",
    "\n",
    "transform = transforms.Compose([\n",
    "    transforms.ToTensor(),\n",
    "    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
    "    transforms.Resize((352, 352)),\n",
    "])\n",
    "img = transform(input_image).unsqueeze(0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Predict and visualize (this might take a few seconds if running without GPU support)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = ['a glass', 'something to fill', 'wood', 'a jar']\n",
    "\n",
    "# predict\n",
    "with torch.no_grad():\n",
    "    preds = model(img.repeat(4,1,1,1), prompts)[0]\n",
    "\n",
    "# visualize prediction\n",
    "_, ax = plt.subplots(1, 5, figsize=(15, 4))\n",
    "[a.axis('off') for a in ax.flatten()]\n",
    "ax[0].imshow(input_image)\n",
    "[ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(4)];\n",
    "[ax[i+1].text(0, -15, prompts[i]) for i in range(4)];"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "800ed241f7db2bd3aa6942aa3be6809cdb30ee6b0a9e773dfecfa9fef1f4c586"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}