Spaces:
Runtime error
Runtime error
File size: 10,606 Bytes
48fa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from torch.functional import Tensor
from general_utils import log
from collections import defaultdict
import numpy as np
import torch
from torch.nn import functional as nnf
class BaseMetric(object):
def __init__(self, metric_names, pred_range=None, gt_index=0, pred_index=0, eval_intermediate=True,
eval_validation=True):
self._names = tuple(metric_names)
self._eval_intermediate = eval_intermediate
self._eval_validation = eval_validation
self._pred_range = pred_range
self._pred_index = pred_index
self._gt_index = gt_index
self.predictions = []
self.ground_truths = []
def eval_intermediate(self):
return self._eval_intermediate
def eval_validation(self):
return self._eval_validation
def names(self):
return self._names
def add(self, predictions, ground_truth):
raise NotImplementedError
def value(self):
raise NotImplementedError
def scores(self):
# similar to value but returns dict
value = self.value()
if type(value) == dict:
return value
else:
assert type(value) in {list, tuple}
return list(zip(self.names(), self.value()))
def _get_pred_gt(self, predictions, ground_truth):
pred = predictions[self._pred_index]
gt = ground_truth[self._gt_index]
if self._pred_range is not None:
pred = pred[:, self._pred_range[0]: self._pred_range[1]]
return pred, gt
class FixedIntervalMetrics(BaseMetric):
def __init__(self, sigmoid=False, ignore_mask=False, resize_to=None,
resize_pred=None, n_values=51, custom_threshold=None):
super().__init__(('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'))
self.intersections = []
self.unions = []
# self.threshold = threshold
self.sigmoid = sigmoid
self.resize_to = resize_to
self.resize_pred = resize_pred # resize prediction to match ground truth
self.class_count = defaultdict(lambda: 0)
self.per_class = defaultdict(lambda : [0,0])
self.ignore_mask = ignore_mask
self.custom_threshold = custom_threshold
self.scores_ap = []
self.scores_iou = []
self.gts, self.preds = [], []
self.classes = []
# [1:-1] ignores 0 and 1
self.threshold_values = np.linspace(0, 1, n_values)[1:-1]
self.metrics = dict(tp=[], fp=[], fn=[], tn=[])
def add(self, pred, gt):
pred_batch = pred[0].cpu()
if self.sigmoid:
pred_batch = torch.sigmoid(pred_batch)
gt_batch = gt[0].cpu()
mask_batch = gt[1] if len(gt) > 1 and not self.ignore_mask and gt[1].numel() > 0 else ([None] * len(pred_batch))
cls_batch = gt[2] if len(gt) > 2 else [None] * len(pred_batch)
if self.resize_to is not None:
gt_batch = nnf.interpolate(gt_batch, self.resize_to, mode='nearest')
pred_batch = nnf.interpolate(pred_batch, self.resize_to, mode='bilinear', align_corners=False)
if isinstance(cls_batch, torch.Tensor):
cls_batch = cls_batch.cpu().numpy().tolist()
assert len(gt_batch) == len(pred_batch) == len(cls_batch), f'{len(gt_batch)} {len(pred_batch)} {len(cls_batch)}'
for predictions, ground_truth, mask, cls in zip(pred_batch, gt_batch, mask_batch, cls_batch):
if self.resize_pred:
predictions = nnf.interpolate(predictions.unsqueeze(0).float(), size=ground_truth.size()[-2:], mode='bilinear', align_corners=True)
p = predictions.flatten()
g = ground_truth.flatten()
assert len(p) == len(g)
if mask is not None:
m = mask.flatten().bool()
p = p[m]
g = g[m]
p_sorted = p.sort()
p = p_sorted.values
g = g[p_sorted.indices]
tps, fps, fns, tns = [], [], [], []
for thresh in self.threshold_values:
valid = torch.where(p > thresh)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = int(g[:n].sum())
tp = int(g[n:].sum())
fns += [fn]
tns += [n - fn]
tps += [tp]
fps += [len(g) - n - tp]
self.metrics['tp'] += [tps]
self.metrics['fp'] += [fps]
self.metrics['fn'] += [fns]
self.metrics['tn'] += [tns]
self.classes += [cls.item() if isinstance(cls, torch.Tensor) else cls]
def value(self):
import time
t_start = time.time()
if set(self.classes) == set([None]):
all_classes = None
log.warning('classes were not provided, cannot compute mIoU')
else:
all_classes = set(int(c) for c in self.classes)
# log.info(f'compute metrics for {len(all_classes)} classes')
summed = {k: [sum([self.metrics[k][i][j]
for i in range(len(self.metrics[k]))])
for j in range(len(self.threshold_values))]
for k in self.metrics.keys()}
if all_classes is not None:
assert len(self.classes) == len(self.metrics['tp']) == len(self.metrics['fn'])
# group by class
metrics_by_class = {c: {k: [] for k in self.metrics.keys()} for c in all_classes}
for i in range(len(self.metrics['tp'])):
for k in self.metrics.keys():
metrics_by_class[self.classes[i]][k] += [self.metrics[k][i]]
# sum over all instances within the classes
summed_by_cls = {k: {c: np.array(metrics_by_class[c][k]).sum(0).tolist() for c in all_classes} for k in self.metrics.keys()}
# Compute average precision
assert (np.array(summed['fp']) + np.array(summed['tp']) ).sum(), 'no predictions is made'
# only consider values where a prediction is made
precisions = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j]) for j in range(len(self.threshold_values))
if summed['tp'][j] + summed['fp'][j] > 0]
recalls = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))
if summed['tp'][j] + summed['fp'][j] > 0]
# remove duplicate recall-precision-pairs (and sort by recall value)
recalls, precisions = zip(*sorted(list(set(zip(recalls, precisions))), key=lambda x: x[0]))
from scipy.integrate import simps
ap = simps(precisions, recalls)
# Compute best IoU
fgiou_scores = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))]
biniou_scores = [
0.5*(summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j])) +
0.5*(summed['tn'][j] / (1 + summed['tn'][j] + summed['fn'][j] + summed['fp'][j]))
for j in range(len(self.threshold_values))
]
index_0p5 = self.threshold_values.tolist().index(0.5)
index_0p1 = self.threshold_values.tolist().index(0.1)
index_0p2 = self.threshold_values.tolist().index(0.2)
index_0p3 = self.threshold_values.tolist().index(0.3)
if self.custom_threshold is not None:
index_ct = self.threshold_values.tolist().index(self.custom_threshold)
if all_classes is not None:
# mean IoU
mean_ious = [np.mean([summed_by_cls['tp'][c][j] / (1 + summed_by_cls['tp'][c][j] + summed_by_cls['fp'][c][j] + summed_by_cls['fn'][c][j])
for c in all_classes])
for j in range(len(self.threshold_values))]
mean_iou_dict = {
'miou_best': max(mean_ious) if all_classes is not None else None,
'miou_0.5': mean_ious[index_0p5] if all_classes is not None else None,
'miou_0.1': mean_ious[index_0p1] if all_classes is not None else None,
'miou_0.2': mean_ious[index_0p2] if all_classes is not None else None,
'miou_0.3': mean_ious[index_0p3] if all_classes is not None else None,
'miou_best_t': self.threshold_values[np.argmax(mean_ious)],
'mean_iou_ct': mean_ious[index_ct] if all_classes is not None and self.custom_threshold is not None else None,
'mean_iou_scores': mean_ious,
}
print(f'metric computation on {(len(all_classes) if all_classes is not None else "no")} classes took {time.time() - t_start:.1f}s')
return {
'ap': ap,
# fgiou
'fgiou_best': max(fgiou_scores),
'fgiou_0.5': fgiou_scores[index_0p5],
'fgiou_0.1': fgiou_scores[index_0p1],
'fgiou_0.2': fgiou_scores[index_0p2],
'fgiou_0.3': fgiou_scores[index_0p3],
'fgiou_best_t': self.threshold_values[np.argmax(fgiou_scores)],
# mean iou
# biniou
'biniou_best': max(biniou_scores),
'biniou_0.5': biniou_scores[index_0p5],
'biniou_0.1': biniou_scores[index_0p1],
'biniou_0.2': biniou_scores[index_0p2],
'biniou_0.3': biniou_scores[index_0p3],
'biniou_best_t': self.threshold_values[np.argmax(biniou_scores)],
# custom threshold
'fgiou_ct': fgiou_scores[index_ct] if self.custom_threshold is not None else None,
'biniou_ct': biniou_scores[index_ct] if self.custom_threshold is not None else None,
'ct': self.custom_threshold,
# statistics
'fgiou_scores': fgiou_scores,
'biniou_scores': biniou_scores,
'precision_recall_curve': sorted(list(set(zip(recalls, precisions)))),
'summed_statistics': summed,
'summed_by_cls_statistics': summed_by_cls,
**mean_iou_dict
}
# ('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'
# return ap, best_fgiou, best_mean_iou, iou_0p5, iou_0p1, mean_iou_0p5, mean_iou_0p1, best_biniou, biniou0p5, best_fgiou_thresh, {'summed': summed, 'summed_by_cls': summed_by_cls}
|