Spaces:
Runtime error
Runtime error
File size: 13,571 Bytes
48fa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import torch
import numpy as np
import os
from os.path import join, isdir, isfile, expanduser
from PIL import Image
from torchvision import transforms
from torchvision.transforms.transforms import Resize
from torch.nn import functional as nnf
from general_utils import get_from_repository
from skimage.draw import polygon2mask
def random_crop_slices(origin_size, target_size):
"""Gets slices of a random crop. """
assert origin_size[0] >= target_size[0] and origin_size[1] >= target_size[1], f'actual size: {origin_size}, target size: {target_size}'
offset_y = torch.randint(0, origin_size[0] - target_size[0] + 1, (1,)).item() # range: 0 <= value < high
offset_x = torch.randint(0, origin_size[1] - target_size[1] + 1, (1,)).item()
return slice(offset_y, offset_y + target_size[0]), slice(offset_x, offset_x + target_size[1])
def find_crop(seg, image_size, iterations=1000, min_frac=None, best_of=None):
best_crops = []
best_crop_not_ok = float('-inf'), None, None
min_sum = 0
seg = seg.astype('bool')
if min_frac is not None:
#min_sum = seg.sum() * min_frac
min_sum = seg.shape[0] * seg.shape[1] * min_frac
for iteration in range(iterations):
sl_y, sl_x = random_crop_slices(seg.shape, image_size)
seg_ = seg[sl_y, sl_x]
sum_seg_ = seg_.sum()
if sum_seg_ > min_sum:
if best_of is None:
return sl_y, sl_x, False
else:
best_crops += [(sum_seg_, sl_y, sl_x)]
if len(best_crops) >= best_of:
best_crops.sort(key=lambda x:x[0], reverse=True)
sl_y, sl_x = best_crops[0][1:]
return sl_y, sl_x, False
else:
if sum_seg_ > best_crop_not_ok[0]:
best_crop_not_ok = sum_seg_, sl_y, sl_x
else:
# return best segmentation found
return best_crop_not_ok[1:] + (best_crop_not_ok[0] <= min_sum,)
class PhraseCut(object):
def __init__(self, split, image_size=400, negative_prob=0, aug=None, aug_color=False, aug_crop=True,
min_size=0, remove_classes=None, with_visual=False, only_visual=False, mask=None):
super().__init__()
self.negative_prob = negative_prob
self.image_size = image_size
self.with_visual = with_visual
self.only_visual = only_visual
self.phrase_form = '{}'
self.mask = mask
self.aug_crop = aug_crop
if aug_color:
self.aug_color = transforms.Compose([
transforms.ColorJitter(0.5, 0.5, 0.2, 0.05),
])
else:
self.aug_color = None
get_from_repository('PhraseCut', ['PhraseCut.tar'], integrity_check=lambda local_dir: all([
isdir(join(local_dir, 'VGPhraseCut_v0')),
isdir(join(local_dir, 'VGPhraseCut_v0', 'images')),
isfile(join(local_dir, 'VGPhraseCut_v0', 'refer_train.json')),
len(os.listdir(join(local_dir, 'VGPhraseCut_v0', 'images'))) in {108250, 108249}
]))
from third_party.PhraseCutDataset.utils.refvg_loader import RefVGLoader
self.refvg_loader = RefVGLoader(split=split)
# img_ids where the size in the annotations does not match actual size
invalid_img_ids = set([150417, 285665, 498246, 61564, 285743, 498269, 498010, 150516, 150344, 286093, 61530,
150333, 286065, 285814, 498187, 285761, 498042])
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
self.normalize = transforms.Normalize(mean, std)
self.sample_ids = [(i, j)
for i in self.refvg_loader.img_ids
for j in range(len(self.refvg_loader.get_img_ref_data(i)['phrases']))
if i not in invalid_img_ids]
# self.all_phrases = list(set([p for i in self.refvg_loader.img_ids for p in self.refvg_loader.get_img_ref_data(i)['phrases']]))
from nltk.stem import WordNetLemmatizer
wnl = WordNetLemmatizer()
# Filter by class (if remove_classes is set)
if remove_classes is None:
pass
else:
from datasets.generate_lvis_oneshot import PASCAL_SYNSETS, traverse_lemmas, traverse_lemmas_hypo
from nltk.corpus import wordnet
print('remove pascal classes...')
get_data = self.refvg_loader.get_img_ref_data # shortcut
keep_sids = None
if remove_classes[0] == 'pas5i':
subset_id = remove_classes[1]
from datasets.generate_lvis_oneshot import PASCAL_5I_SYNSETS_ORDERED, PASCAL_5I_CLASS_IDS
avoid = [PASCAL_5I_SYNSETS_ORDERED[i] for i in range(20) if i+1 not in PASCAL_5I_CLASS_IDS[subset_id]]
elif remove_classes[0] == 'zs':
stop = remove_classes[1]
from datasets.pascal_zeroshot import PASCAL_VOC_CLASSES_ZS
avoid = [c for class_set in PASCAL_VOC_CLASSES_ZS[:stop] for c in class_set]
print(avoid)
elif remove_classes[0] == 'aff':
# avoid = ['drink.v.01', 'sit.v.01', 'ride.v.02']
# all_lemmas = set(['drink', 'sit', 'ride'])
avoid = ['drink', 'drinks', 'drinking', 'sit', 'sits', 'sitting',
'ride', 'rides', 'riding',
'fly', 'flies', 'flying', 'drive', 'drives', 'driving', 'driven',
'swim', 'swims', 'swimming',
'wheels', 'wheel', 'legs', 'leg', 'ear', 'ears']
keep_sids = [(i, j) for i, j in self.sample_ids if
all(x not in avoid for x in get_data(i)['phrases'][j].split(' '))]
print('avoid classes:', avoid)
if keep_sids is None:
all_lemmas = [s for ps in avoid for s in traverse_lemmas_hypo(wordnet.synset(ps), max_depth=None)]
all_lemmas = list(set(all_lemmas))
all_lemmas = [h.replace('_', ' ').lower() for h in all_lemmas]
all_lemmas = set(all_lemmas)
# divide into multi word and single word
all_lemmas_s = set(l for l in all_lemmas if ' ' not in l)
all_lemmas_m = set(l for l in all_lemmas if l not in all_lemmas_s)
# new3
phrases = [get_data(i)['phrases'][j] for i, j in self.sample_ids]
remove_sids = set((i,j) for (i,j), phrase in zip(self.sample_ids, phrases)
if any(l in phrase for l in all_lemmas_m) or
len(set(wnl.lemmatize(w) for w in phrase.split(' ')).intersection(all_lemmas_s)) > 0
)
keep_sids = [(i, j) for i, j in self.sample_ids if (i,j) not in remove_sids]
print(f'Reduced to {len(keep_sids) / len(self.sample_ids):.3f}')
removed_ids = set(self.sample_ids) - set(keep_sids)
print('Examples of removed', len(removed_ids))
for i, j in list(removed_ids)[:20]:
print(i, get_data(i)['phrases'][j])
self.sample_ids = keep_sids
from itertools import groupby
samples_by_phrase = [(self.refvg_loader.get_img_ref_data(i)['phrases'][j], (i, j))
for i, j in self.sample_ids]
samples_by_phrase = sorted(samples_by_phrase)
samples_by_phrase = groupby(samples_by_phrase, key=lambda x: x[0])
self.samples_by_phrase = {prompt: [s[1] for s in prompt_sample_ids] for prompt, prompt_sample_ids in samples_by_phrase}
self.all_phrases = list(set(self.samples_by_phrase.keys()))
if self.only_visual:
assert self.with_visual
self.sample_ids = [(i, j) for i, j in self.sample_ids
if len(self.samples_by_phrase[self.refvg_loader.get_img_ref_data(i)['phrases'][j]]) > 1]
# Filter by size (if min_size is set)
sizes = [self.refvg_loader.get_img_ref_data(i)['gt_boxes'][j] for i, j in self.sample_ids]
image_sizes = [self.refvg_loader.get_img_ref_data(i)['width'] * self.refvg_loader.get_img_ref_data(i)['height'] for i, j in self.sample_ids]
#self.sizes = [sum([(s[2] - s[0]) * (s[3] - s[1]) for s in size]) for size in sizes]
self.sizes = [sum([s[2] * s[3] for s in size]) / img_size for size, img_size in zip(sizes, image_sizes)]
if min_size:
print('filter by size')
self.sample_ids = [self.sample_ids[i] for i in range(len(self.sample_ids)) if self.sizes[i] > min_size]
self.base_path = join(expanduser('~/datasets/PhraseCut/VGPhraseCut_v0/images/'))
def __len__(self):
return len(self.sample_ids)
def load_sample(self, sample_i, j):
img_ref_data = self.refvg_loader.get_img_ref_data(sample_i)
polys_phrase0 = img_ref_data['gt_Polygons'][j]
phrase = img_ref_data['phrases'][j]
phrase = self.phrase_form.format(phrase)
masks = []
for polys in polys_phrase0:
for poly in polys:
poly = [p[::-1] for p in poly] # swap x,y
masks += [polygon2mask((img_ref_data['height'], img_ref_data['width']), poly)]
seg = np.stack(masks).max(0)
img = np.array(Image.open(join(self.base_path, str(img_ref_data['image_id']) + '.jpg')))
min_shape = min(img.shape[:2])
if self.aug_crop:
sly, slx, exceed = find_crop(seg, (min_shape, min_shape), iterations=50, min_frac=0.05)
else:
sly, slx = slice(0, None), slice(0, None)
seg = seg[sly, slx]
img = img[sly, slx]
seg = seg.astype('uint8')
seg = torch.from_numpy(seg).view(1, 1, *seg.shape)
if img.ndim == 2:
img = np.dstack([img] * 3)
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0).float()
seg = nnf.interpolate(seg, (self.image_size, self.image_size), mode='nearest')[0,0]
img = nnf.interpolate(img, (self.image_size, self.image_size), mode='bilinear', align_corners=True)[0]
# img = img.permute([2,0, 1])
img = img / 255.0
if self.aug_color is not None:
img = self.aug_color(img)
img = self.normalize(img)
return img, seg, phrase
def __getitem__(self, i):
sample_i, j = self.sample_ids[i]
img, seg, phrase = self.load_sample(sample_i, j)
if self.negative_prob > 0:
if torch.rand((1,)).item() < self.negative_prob:
new_phrase = None
while new_phrase is None or new_phrase == phrase:
idx = torch.randint(0, len(self.all_phrases), (1,)).item()
new_phrase = self.all_phrases[idx]
phrase = new_phrase
seg = torch.zeros_like(seg)
if self.with_visual:
# find a corresponding visual image
if phrase in self.samples_by_phrase and len(self.samples_by_phrase[phrase]) > 1:
idx = torch.randint(0, len(self.samples_by_phrase[phrase]), (1,)).item()
other_sample = self.samples_by_phrase[phrase][idx]
#print(other_sample)
img_s, seg_s, _ = self.load_sample(*other_sample)
from datasets.utils import blend_image_segmentation
if self.mask in {'separate', 'text_and_separate'}:
# assert img.shape[1:] == img_s.shape[1:] == seg_s.shape == seg.shape[1:]
add_phrase = [phrase] if self.mask == 'text_and_separate' else []
vis_s = add_phrase + [img_s, seg_s, True]
else:
if self.mask.startswith('text_and_'):
mask_mode = self.mask[9:]
label_add = [phrase]
else:
mask_mode = self.mask
label_add = []
masked_img_s = torch.from_numpy(blend_image_segmentation(img_s, seg_s, mode=mask_mode, image_size=self.image_size)[0])
vis_s = label_add + [masked_img_s, True]
else:
# phrase is unique
vis_s = torch.zeros_like(img)
if self.mask in {'separate', 'text_and_separate'}:
add_phrase = [phrase] if self.mask == 'text_and_separate' else []
vis_s = add_phrase + [vis_s, torch.zeros(*vis_s.shape[1:], dtype=torch.uint8), False]
elif self.mask.startswith('text_and_'):
vis_s = [phrase, vis_s, False]
else:
vis_s = [vis_s, False]
else:
assert self.mask == 'text'
vis_s = [phrase]
seg = seg.unsqueeze(0).float()
data_x = (img,) + tuple(vis_s)
return data_x, (seg, torch.zeros(0), i)
class PhraseCutPlus(PhraseCut):
def __init__(self, split, image_size=400, aug=None, aug_color=False, aug_crop=True, min_size=0, remove_classes=None, only_visual=False, mask=None):
super().__init__(split, image_size=image_size, negative_prob=0.2, aug=aug, aug_color=aug_color, aug_crop=aug_crop, min_size=min_size,
remove_classes=remove_classes, with_visual=True, only_visual=only_visual, mask=mask) |