Spaces:
Runtime error
Runtime error
File size: 9,281 Bytes
48fa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from torch.functional import Tensor
from general_utils import load_model
from torch.utils.data import DataLoader
import torch
import numpy as np
def denorm(img):
np_input = False
if isinstance(img, np.ndarray):
img = torch.from_numpy(img)
np_input = True
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
img_denorm = (img*std[:,None,None]) + mean[:,None,None]
if np_input:
img_denorm = np.clip(img_denorm.numpy(), 0, 1)
else:
img_denorm = torch.clamp(img_denorm, 0, 1)
return img_denorm
def norm(img):
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
return (img - mean[:,None,None]) / std[:,None,None]
def fast_iou_curve(p, g):
g = g[p.sort().indices]
p = torch.sigmoid(p.sort().values)
scores = []
vals = np.linspace(0, 1, 50)
for q in vals:
n = int(len(g) * q)
valid = torch.where(p > q)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = g[:n].sum()
tn = n - fn
tp = g[n:].sum()
fp = len(g) - n - tp
iou = tp / (tp + fn + fp)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
scores += [iou]
return vals, scores
def fast_rp_curve(p, g):
g = g[p.sort().indices]
p = torch.sigmoid(p.sort().values)
precisions, recalls = [], []
vals = np.linspace(p.min(), p.max(), 250)
for q in p[::100000]:
n = int(len(g) * q)
valid = torch.where(p > q)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = g[:n].sum()
tn = n - fn
tp = g[n:].sum()
fp = len(g) - n - tp
iou = tp / (tp + fn + fp)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
precisions += [precision]
recalls += [recall]
return recalls, precisions
# Image processing
def img_preprocess(batch, blur=0, grayscale=False, center_context=None, rect=False, rect_color=(255,0,0), rect_width=2,
brightness=1.0, bg_fac=1, colorize=False, outline=False, image_size=224):
import cv2
rw = rect_width
out = []
for img, mask in zip(batch[1], batch[2]):
img = img.cpu() if isinstance(img, torch.Tensor) else torch.from_numpy(img)
mask = mask.cpu() if isinstance(mask, torch.Tensor) else torch.from_numpy(mask)
img *= brightness
img_bl = img
if blur > 0: # best 5
img_bl = torch.from_numpy(cv2.GaussianBlur(img.permute(1,2,0).numpy(), (15, 15), blur)).permute(2,0,1)
if grayscale:
img_bl = img_bl[1][None]
#img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl
# img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl * (1-mask)
img_inp = img*mask + (bg_fac) * img_bl * (1-mask)
if rect:
_, bbox = crop_mask(img, mask, context=0.1)
img_inp[:, bbox[2]: bbox[3], max(0, bbox[0]-rw):bbox[0]+rw] = torch.tensor(rect_color)[:,None,None]
img_inp[:, bbox[2]: bbox[3], max(0, bbox[1]-rw):bbox[1]+rw] = torch.tensor(rect_color)[:,None,None]
img_inp[:, max(0, bbox[2]-1): bbox[2]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
img_inp[:, max(0, bbox[3]-1): bbox[3]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
if center_context is not None:
img_inp = object_crop(img_inp, mask, context=center_context, image_size=image_size)
if colorize:
img_gray = denorm(img)
img_gray = cv2.cvtColor(img_gray.permute(1,2,0).numpy(), cv2.COLOR_RGB2GRAY)
img_gray = torch.stack([torch.from_numpy(img_gray)]*3)
img_inp = torch.tensor([1,0.2,0.2])[:,None,None] * img_gray * mask + bg_fac * img_gray * (1-mask)
img_inp = norm(img_inp)
if outline:
cont = cv2.findContours(mask.byte().numpy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
outline_img = np.zeros(mask.shape, dtype=np.uint8)
cv2.drawContours(outline_img, cont[0], -1, thickness=5, color=(255, 255, 255))
outline_img = torch.stack([torch.from_numpy(outline_img)]*3).float() / 255.
img_inp = torch.tensor([1,0,0])[:,None,None] * outline_img + denorm(img_inp) * (1- outline_img)
img_inp = norm(img_inp)
out += [img_inp]
return torch.stack(out)
def object_crop(img, mask, context=0.0, square=False, image_size=224):
img_crop, bbox = crop_mask(img, mask, context=context, square=square)
img_crop = pad_to_square(img_crop, channel_dim=0)
img_crop = torch.nn.functional.interpolate(img_crop.unsqueeze(0), (image_size, image_size)).squeeze(0)
return img_crop
def crop_mask(img, mask, context=0.0, square=False):
assert img.shape[1:] == mask.shape
bbox = [mask.max(0).values.argmax(), mask.size(0) - mask.max(0).values.flip(0).argmax()]
bbox += [mask.max(1).values.argmax(), mask.size(1) - mask.max(1).values.flip(0).argmax()]
bbox = [int(x) for x in bbox]
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
# square mask
if square:
bbox[0] = int(max(0, bbox[0] - context * height))
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
bbox[2] = int(max(0, bbox[2] - context * width))
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
if height > width:
bbox[2] = int(max(0, (bbox[2] - 0.5*height)))
bbox[3] = bbox[2] + height
else:
bbox[0] = int(max(0, (bbox[0] - 0.5*width)))
bbox[1] = bbox[0] + width
else:
bbox[0] = int(max(0, bbox[0] - context * height))
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
bbox[2] = int(max(0, bbox[2] - context * width))
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
img_crop = img[:, bbox[2]: bbox[3], bbox[0]: bbox[1]]
return img_crop, bbox
def pad_to_square(img, channel_dim=2, fill=0):
"""
add padding such that a squared image is returned """
from torchvision.transforms.functional import pad
if channel_dim == 2:
img = img.permute(2, 0, 1)
elif channel_dim == 0:
pass
else:
raise ValueError('invalid channel_dim')
h, w = img.shape[1:]
pady1 = pady2 = padx1 = padx2 = 0
if h > w:
padx1 = (h - w) // 2
padx2 = h - w - padx1
elif w > h:
pady1 = (w - h) // 2
pady2 = w - h - pady1
img_padded = pad(img, padding=(padx1, pady1, padx2, pady2), padding_mode='constant')
if channel_dim == 2:
img_padded = img_padded.permute(1, 2, 0)
return img_padded
# qualitative
def split_sentence(inp, limit=9):
t_new, current_len = [], 0
for k, t in enumerate(inp.split(' ')):
current_len += len(t) + 1
t_new += [t+' ']
# not last
if current_len > limit and k != len(inp.split(' ')) - 1:
current_len = 0
t_new += ['\n']
t_new = ''.join(t_new)
return t_new
from matplotlib import pyplot as plt
def plot(imgs, *preds, labels=None, scale=1, cmap=plt.cm.magma, aps=None, gt_labels=None, vmax=None):
row_off = 0 if labels is None else 1
_, ax = plt.subplots(len(imgs) + row_off, 1 + len(preds), figsize=(scale * float(1 + 2*len(preds)), scale * float(len(imgs)*2)))
[a.axis('off') for a in ax.flatten()]
if labels is not None:
for j in range(len(labels)):
t_new = split_sentence(labels[j], limit=6)
ax[0, 1+ j].text(0.5, 0.1, t_new, ha='center', fontsize=3+ 10*scale)
for i in range(len(imgs)):
ax[i + row_off,0].imshow(imgs[i])
for j in range(len(preds)):
img = preds[j][i][0].detach().cpu().numpy()
if gt_labels is not None and labels[j] == gt_labels[i]:
print(j, labels[j], gt_labels[i])
edgecolor = 'red'
if aps is not None:
ax[i + row_off, 1 + j].text(30, 70, f'AP: {aps[i]:.3f}', color='red', fontsize=8)
else:
edgecolor = 'k'
rect = plt.Rectangle([0,0], img.shape[0], img.shape[1], facecolor="none",
edgecolor=edgecolor, linewidth=3)
ax[i + row_off,1 + j].add_patch(rect)
if vmax is None:
this_vmax = 1
elif vmax == 'per_prompt':
this_vmax = max([preds[j][_i][0].max() for _i in range(len(imgs))])
elif vmax == 'per_image':
this_vmax = max([preds[_j][i][0].max() for _j in range(len(preds))])
ax[i + row_off,1 + j].imshow(img, vmin=0, vmax=this_vmax, cmap=cmap)
# ax[i,1 + j].imshow(preds[j][i][0].detach().cpu().numpy(), vmin=preds[j].min(), vmax=preds[j].max())
plt.tight_layout()
plt.subplots_adjust(wspace=0.05, hspace=0.05) |