Spaces:
Runtime error
Runtime error
File size: 10,397 Bytes
48fa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import torch
import inspect
import json
import yaml
import math
import os
import sys
from general_utils import log
import numpy as np
from functools import partial
from os.path import expanduser, join, isfile, basename
from torch.cuda.amp import autocast, GradScaler
from torch.optim.lr_scheduler import LambdaLR
from contextlib import nullcontext
from torch.utils.data import DataLoader
from general_utils import TrainingLogger, get_attribute, filter_args, log, training_config_from_cli_args
def cosine_warmup_lr(i, warmup=10, max_iter=90):
""" Cosine LR with Warmup """
if i < warmup:
return (i+1)/(warmup+1)
else:
return 0.5 + 0.5*math.cos(math.pi*(((i-warmup)/(max_iter- warmup))))
def validate(model, dataset, config):
data_loader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=False)
metric_class, use_metric = config.val_metric_class, config.use_val_metric
loss_fn = get_attribute(config.loss)
model.eval()
model.cuda()
if metric_class is not None:
metric = get_attribute(metric_class)()
with torch.no_grad():
i, losses = 0, []
for data_x, data_y in data_loader:
data_x = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_x]
data_y = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_y]
prompts = model.sample_prompts(data_x[1], prompt_list=('a photo of a {}',))
pred, visual_q, _, _ = model(data_x[0], prompts, return_features=True)
if metric_class is not None:
metric.add([pred], data_y)
# pred = model(data_x[0], prompts)
# loss = loss_fn(pred[0], data_y[0])
loss = loss_fn(pred, data_y[0])
losses += [float(loss)]
i += 1
if config.val_max_iterations is not None and i > config.val_max_iterations:
break
if use_metric is None:
return np.mean(losses), {}, False
else:
metric_scores = {m: s for m, s in zip(metric.names(), metric.value())} if metric is not None else {}
return np.mean(losses), metric_scores, True
def main():
config = training_config_from_cli_args()
val_interval, best_val_loss, best_val_score = config.val_interval, float('inf'), float('-inf')
model_cls = get_attribute(config.model)
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
model = model_cls(**model_args).cuda()
dataset_cls = get_attribute(config.dataset)
_, dataset_args, _ = filter_args(config, inspect.signature(dataset_cls).parameters)
dataset = dataset_cls(**dataset_args)
log.info(f'Train dataset {dataset.__class__.__name__} (length: {len(dataset)})')
if val_interval is not None:
dataset_val_args = {k[4:]: v for k,v in config.items() if k.startswith('val_') and k != 'val_interval'}
_, dataset_val_args, _ = filter_args(dataset_val_args, inspect.signature(dataset_cls).parameters)
print('val args', {**dataset_args, **{'split': 'val', 'aug': 0}, **dataset_val_args})
dataset_val = dataset_cls(**{**dataset_args, **{'split': 'val', 'aug': 0}, **dataset_val_args})
# optimizer
opt_cls = get_attribute(config.optimizer)
if config.optimize == 'torch.optim.SGD':
opt_args = {'momentum': config.momentum if 'momentum' in config else 0}
else:
opt_args = {}
opt = opt_cls(model.parameters(), lr=config.lr, **opt_args)
if config.lr_scheduler == 'cosine':
assert config.T_max is not None and config.eta_min is not None
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, config.T_max, config.eta_min)
elif config.lr_scheduler == 'warmup_cosine':
lr_scheduler = LambdaLR(opt, partial(cosine_warmup_lr, max_iter=(config.max_iterations), warmup=config.warmup))
else:
lr_scheduler = None
batch_size, max_iterations = config.batch_size, config.max_iterations
loss_fn = get_attribute(config.loss)
if config.amp:
log.info('Using AMP')
autocast_fn = autocast
scaler = GradScaler()
else:
autocast_fn, scaler = nullcontext, None
save_only_trainable = True
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=4)
# disable config when hyperparam. opt. to avoid writing logs.
tracker_config = config if not config.hyperparameter_optimization else None
with TrainingLogger(log_dir=config.name, model=model, config=tracker_config) as logger:
i = 0
while True:
for data_x, data_y in data_loader:
# between caption and output feature.
# 1. Sample random captions
# 2. Check alignment with CLIP
# randomly mix text and visual support conditionals
if config.mix:
assert config.mask.startswith('text_and')
with autocast_fn():
# data_x[1] = text label
prompts = model.sample_prompts(data_x[1])
# model.clip_model()
text_cond = model.compute_conditional(prompts)
if model.__class__.__name__ == 'CLIPDensePredTMasked':
# when mask=='separate'
visual_s_cond, _, _ = model.visual_forward_masked(data_x[2].cuda(), data_x[3].cuda())
else:
# data_x[2] = visual prompt
visual_s_cond, _, _ = model.visual_forward(data_x[2].cuda())
max_txt = config.mix_text_max if config.mix_text_max is not None else 1
batch_size = text_cond.shape[0]
# sample weights for each element in batch
text_weights = torch.distributions.Uniform(config.mix_text_min, max_txt).sample((batch_size,))[:, None]
text_weights = text_weights.cuda()
if dataset.__class__.__name__ == 'PhraseCut':
# give full weight to text where support_image is invalid
visual_is_valid = data_x[4] if model.__class__.__name__ == 'CLIPDensePredTMasked' else data_x[3]
text_weights = torch.max(text_weights[:,0], 1 - visual_is_valid.float().cuda()).unsqueeze(1)
cond = text_cond * text_weights + visual_s_cond * (1 - text_weights)
else:
# no mix
if model.__class__.__name__ == 'CLIPDensePredTMasked':
# compute conditional vector using CLIP masking
with autocast_fn():
assert config.mask == 'separate'
cond, _, _ = model.visual_forward_masked(data_x[1].cuda(), data_x[2].cuda())
else:
cond = data_x[1]
if isinstance(cond, torch.Tensor):
cond = cond.cuda()
with autocast_fn():
visual_q = None
pred, visual_q, _, _ = model(data_x[0].cuda(), cond, return_features=True)
loss = loss_fn(pred, data_y[0].cuda())
if torch.isnan(loss) or torch.isinf(loss):
# skip if loss is nan
log.warning('Training stopped due to inf/nan loss.')
sys.exit(-1)
extra_loss = 0
loss += extra_loss
opt.zero_grad()
if scaler is None:
loss.backward()
opt.step()
else:
scaler.scale(loss).backward()
scaler.step(opt)
scaler.update()
if lr_scheduler is not None:
lr_scheduler.step()
if i % 2000 == 0:
current_lr = [g['lr'] for g in opt.param_groups][0]
log.info(f'current lr: {current_lr:.5f} ({len(opt.param_groups)} parameter groups)')
logger.iter(i=i, loss=loss)
i += 1
if i >= max_iterations:
if not isfile(join(logger.base_path, 'weights.pth')):
# only write if no weights were already written
logger.save_weights(only_trainable=save_only_trainable)
sys.exit(0)
if config.checkpoint_iterations is not None and i in config.checkpoint_iterations:
logger.save_weights(only_trainable=save_only_trainable, weight_file=f'weights_{i}.pth')
if val_interval is not None and i % val_interval == val_interval - 1:
val_loss, val_scores, maximize = validate(model, dataset_val, config)
if len(val_scores) > 0:
score_str = f', scores: ' + ', '.join(f'{k}: {v}' for k, v in val_scores.items())
if maximize and val_scores[config.use_val_metric] > best_val_score:
logger.save_weights(only_trainable=save_only_trainable)
best_val_score = val_scores[config.use_val_metric]
elif not maximize and val_scores[config.use_val_metric] < best_val_score:
logger.save_weights(only_trainable=save_only_trainable)
best_val_score = val_scores[config.use_val_metric]
else:
score_str = ''
# if no score is used, fall back to loss
if val_loss < best_val_loss:
logger.save_weights(only_trainable=save_only_trainable)
best_val_loss = val_loss
log.info(f'Validation loss: {val_loss}' + score_str)
logger.iter(i=i, val_loss=val_loss, extra_loss=float(extra_loss), **val_scores)
model.train()
print('epoch complete')
if __name__ == '__main__':
main() |