Spaces:
Runtime error
Runtime error
File size: 16,896 Bytes
48fa639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
from torch.functional import Tensor
import torch
import inspect
import json
import yaml
import time
import sys
from general_utils import log
import numpy as np
from os.path import expanduser, join, isfile, realpath
from torch.utils.data import DataLoader
from metrics import FixedIntervalMetrics
from general_utils import load_model, log, score_config_from_cli_args, AttributeDict, get_attribute, filter_args
DATASET_CACHE = dict()
def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False, ignore_weights=False):
config = json.load(open(join('logs', checkpoint_id, 'config.json')))
if model_args != 'from_config' and type(model_args) != dict:
raise ValueError('model_args must either be "from_config" or a dictionary of values')
model_cls = get_attribute(config['model'])
# load model
if model_args == 'from_config':
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
model = model_cls(**model_args)
if weights_file is None:
weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
else:
weights_file = realpath(join('logs', checkpoint_id, weights_file))
if isfile(weights_file) and not ignore_weights:
weights = torch.load(weights_file)
for _, w in weights.items():
assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
model.load_state_dict(weights, strict=strict)
else:
if not ignore_weights:
raise FileNotFoundError(f'model checkpoint {weights_file} was not found')
if with_config:
return model, config
return model
def compute_shift2(model, datasets, seed=123, repetitions=1):
""" computes shift """
model.eval()
model.cuda()
import random
random.seed(seed)
preds, gts = [], []
for i_dataset, dataset in enumerate(datasets):
loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)
max_iterations = int(repetitions * len(dataset.dataset.data_list))
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if v is not None else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if v is not None else v for v in data_y]
pred, = model(data_x[0], data_x[1], data_x[2])
preds += [pred.detach()]
gts += [data_y]
i += 1
if max_iterations and i >= max_iterations:
break
from metrics import FixedIntervalMetrics
n_values = 51
thresholds = np.linspace(0, 1, n_values)[1:-1]
metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, n_values=n_values)
for p, y in zip(preds, gts):
metric.add(p.unsqueeze(1), y)
best_idx = np.argmax(metric.value()['fgiou_scores'])
best_thresh = thresholds[best_idx]
return best_thresh
def get_cached_pascal_pfe(split, config):
from datasets.pfe_dataset import PFEPascalWrapper
try:
dataset = DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)]
except KeyError:
dataset = PFEPascalWrapper(mode='val', split=split, mask=config.mask, image_size=config.image_size, label_support=config.label_support)
DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)] = dataset
return dataset
def main():
config, train_checkpoint_id = score_config_from_cli_args()
metrics = score(config, train_checkpoint_id, None)
for dataset in metrics.keys():
for k in metrics[dataset]:
if type(metrics[dataset][k]) in {float, int}:
print(dataset, f'{k:<16} {metrics[dataset][k]:.3f}')
def score(config, train_checkpoint_id, train_config):
config = AttributeDict(config)
print(config)
# use training dataset and loss
train_config = AttributeDict(json.load(open(f'logs/{train_checkpoint_id}/config.json')))
cp_str = f'_{config.iteration_cp}' if config.iteration_cp is not None else ''
model_cls = get_attribute(train_config['model'])
_, model_args, _ = filter_args(train_config, inspect.signature(model_cls).parameters)
model_args = {**model_args, **{k: config[k] for k in ['process_cond', 'fix_shift'] if k in config}}
strict_models = {'ConditionBase4', 'PFENetWrapper'}
model = load_model(train_checkpoint_id, strict=model_cls.__name__ in strict_models, model_args=model_args,
weights_file=f'weights{cp_str}.pth', )
model.eval()
model.cuda()
metric_args = dict()
if 'threshold' in config:
if config.metric.split('.')[-1] == 'SkLearnMetrics':
metric_args['threshold'] = config.threshold
if 'resize_to' in config:
metric_args['resize_to'] = config.resize_to
if 'sigmoid' in config:
metric_args['sigmoid'] = config.sigmoid
if 'custom_threshold' in config:
metric_args['custom_threshold'] = config.custom_threshold
if config.test_dataset == 'pascal':
loss_fn = get_attribute(train_config.loss)
# assume that if no split is specified in train_config, test on all splits,
if 'splits' in config:
splits = config.splits
else:
if 'split' in train_config and type(train_config.split) == int:
# unless train_config has a split set, in that case assume train mode in training
splits = [train_config.split]
assert train_config.mode == 'train'
else:
splits = [0,1,2,3]
log.info('Test on these splits', splits)
scores = dict()
for split in splits:
shift = config.shift if 'shift' in config else 0
# automatic shift
if shift == 'auto':
shift_compute_t = time.time()
shift = compute_shift2(model, [get_cached_pascal_pfe(s, config) for s in range(4) if s != split], repetitions=config.compute_shift_fac)
log.info(f'Best threshold is {shift}, computed on splits: {[s for s in range(4) if s != split]}, took {time.time() - shift_compute_t:.1f}s')
dataset = get_cached_pascal_pfe(split, config)
eval_start_t = time.time()
loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)
assert config.batch_size is None or config.batch_size == 1, 'When PFE Dataset is used, batch size must be 1'
metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, custom_threshold=shift, **metric_args)
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
if config.mask == 'separate': # for old CondBase model
pred, = model(data_x[0], data_x[1], data_x[2])
else:
# assert config.mask in {'text', 'highlight'}
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
# loss = loss_fn(pred, data_y[0])
metric.add(pred.unsqueeze(1) + shift, data_y)
# losses += [float(loss)]
i += 1
if config.max_iterations and i >= config.max_iterations:
break
#scores[split] = {m: s for m, s in zip(metric.names(), metric.value())}
log.info(f'Dataset length: {len(dataset)}, took {time.time() - eval_start_t:.1f}s to evaluate.')
print(metric.value()['mean_iou_scores'])
scores[split] = metric.scores()
log.info(f'Completed split {split}')
key_prefix = config['name'] if 'name' in config else 'pas'
all_keys = set.intersection(*[set(v.keys()) for v in scores.values()])
valid_keys = [k for k in all_keys if all(v[k] is not None and isinstance(v[k], (int, float, np.float)) for v in scores.values())]
return {key_prefix: {k: np.mean([s[k] for s in scores.values()]) for k in valid_keys}}
if config.test_dataset == 'coco':
from datasets.coco_wrapper import COCOWrapper
coco_dataset = COCOWrapper('test', fold=train_config.fold, image_size=train_config.image_size, mask=config.mask,
with_class_label=True)
log.info('Dataset length', len(coco_dataset))
loader = DataLoader(coco_dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
metric = get_attribute(config.metric)(resize_pred=True, **metric_args)
shift = config.shift if 'shift' in config else 0
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
if config.mask == 'separate': # for old CondBase model
pred, = model(data_x[0], data_x[1], data_x[2])
else:
# assert config.mask in {'text', 'highlight'}
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
metric.add([pred + shift], data_y)
i += 1
if config.max_iterations and i >= config.max_iterations:
break
key_prefix = config['name'] if 'name' in config else 'coco'
return {key_prefix: metric.scores()}
#return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}
if config.test_dataset == 'phrasecut':
from datasets.phrasecut import PhraseCut
only_visual = config.only_visual is not None and config.only_visual
with_visual = config.with_visual is not None and config.with_visual
dataset = PhraseCut('test',
image_size=train_config.image_size,
mask=config.mask,
with_visual=with_visual, only_visual=only_visual, aug_crop=False,
aug_color=False)
loader = DataLoader(dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
metric = get_attribute(config.metric)(resize_pred=True, **metric_args)
shift = config.shift if 'shift' in config else 0
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
metric.add([pred + shift], data_y)
i += 1
if config.max_iterations and i >= config.max_iterations:
break
key_prefix = config['name'] if 'name' in config else 'phrasecut'
return {key_prefix: metric.scores()}
#return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}
if config.test_dataset == 'pascal_zs':
from third_party.JoEm.model.metric import Evaluator
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
from datasets.pascal_zeroshot import PascalZeroShot, PASCAL_VOC_CLASSES_ZS
from models.clipseg import CLIPSegMultiLabel
n_unseen = train_config.remove_classes[1]
pz = PascalZeroShot('val', n_unseen, image_size=352)
m = CLIPSegMultiLabel(model=train_config.name).cuda()
m.eval();
print(len(pz), n_unseen)
print('training removed', [c for class_set in PASCAL_VOC_CLASSES_ZS[:n_unseen // 2] for c in class_set])
print('unseen', [VOC[i] for i in get_unseen_idx(n_unseen)])
print('seen', [VOC[i] for i in get_seen_idx(n_unseen)])
loader = DataLoader(pz, batch_size=8)
evaluator = Evaluator(21, get_unseen_idx(n_unseen), get_seen_idx(n_unseen))
for i, (data_x, data_y) in enumerate(loader):
pred = m(data_x[0].cuda())
evaluator.add_batch(data_y[0].numpy(), pred.argmax(1).cpu().detach().numpy())
if config.max_iter is not None and i > config.max_iter:
break
scores = evaluator.Mean_Intersection_over_Union()
key_prefix = config['name'] if 'name' in config else 'pas_zs'
return {key_prefix: {k: scores[k] for k in ['seen', 'unseen', 'harmonic', 'overall']}}
elif config.test_dataset in {'same_as_training', 'affordance'}:
loss_fn = get_attribute(train_config.loss)
metric_cls = get_attribute(config.metric)
metric = metric_cls(**metric_args)
if config.test_dataset == 'same_as_training':
dataset_cls = get_attribute(train_config.dataset)
elif config.test_dataset == 'affordance':
dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_Affordance')
dataset_name = 'aff'
else:
dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_OneShot')
dataset_name = 'lvis'
_, dataset_args, _ = filter_args(config, inspect.signature(dataset_cls).parameters)
dataset_args['image_size'] = train_config.image_size # explicitly use training image size for evaluation
if model.__class__.__name__ == 'PFENetWrapper':
dataset_args['image_size'] = config.image_size
log.info('init dataset', str(dataset_cls))
dataset = dataset_cls(**dataset_args)
log.info(f'Score on {model.__class__.__name__} on {dataset_cls.__name__}')
data_loader = torch.utils.data.DataLoader(dataset, batch_size=config.batch_size, shuffle=config.shuffle)
# explicitly set prompts
if config.prompt == 'plain':
model.prompt_list = ['{}']
elif config.prompt == 'fixed':
model.prompt_list = ['a photo of a {}.']
elif config.prompt == 'shuffle':
model.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
elif config.prompt == 'shuffle_clip':
from models.clip_prompts import imagenet_templates
model.prompt_list = imagenet_templates
config.assume_no_unused_keys(exceptions=['max_iterations'])
t_start = time.time()
with torch.no_grad(): # TODO: switch to inference_mode (torch 1.9)
i, losses = 0, []
for data_x, data_y in data_loader:
data_x = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_x]
data_y = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_y]
if model.__class__.__name__ in {'ConditionBase4', 'PFENetWrapper'}:
pred, = model(data_x[0], data_x[1], data_x[2])
visual_q = None
else:
pred, visual_q, _, _ = model(data_x[0], data_x[1], return_features=True)
loss = loss_fn(pred, data_y[0])
metric.add([pred], data_y)
losses += [float(loss)]
i += 1
if config.max_iterations and i >= config.max_iterations:
break
# scores = {m: s for m, s in zip(metric.names(), metric.value())}
scores = metric.scores()
keys = set(scores.keys())
if dataset.negative_prob > 0 and 'mIoU' in keys:
keys.remove('mIoU')
name_mask = dataset.mask.replace('text_label', 'txt')[:3]
name_neg = '' if dataset.negative_prob == 0 else '_' + str(dataset.negative_prob)
score_name = config.name if 'name' in config else f'{dataset_name}_{name_mask}{name_neg}'
scores = {score_name: {k: v for k,v in scores.items() if k in keys}}
scores[score_name].update({'test_loss': np.mean(losses)})
log.info(f'Evaluation took {time.time() - t_start:.1f}s')
return scores
else:
raise ValueError('invalid test dataset')
if __name__ == '__main__':
main() |