File size: 42,205 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7c357
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
from wan.modules.attention import attention
from wan.modules.model import (
    WanRMSNorm,
    rope_apply,
    WanLayerNorm,
    WAN_CROSSATTENTION_CLASSES,
    rope_params,
    MLPProj,
    sinusoidal_embedding_1d
)
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
from diffusers.configuration_utils import ConfigMixin, register_to_config
from torch.nn.attention.flex_attention import BlockMask
from diffusers.models.modeling_utils import ModelMixin
import torch.nn as nn
import torch
import math
import torch.distributed as dist

# wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention
# see https://github.com/pytorch/pytorch/issues/133254
# change to default for other models
flex_attention = torch.compile(
    flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs")


def causal_rope_apply(x, grid_sizes, freqs, start_frame=0):
    n, c = x.size(2), x.size(3) // 2

    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

    # loop over samples
    output = []

    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w

        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
            seq_len, n, -1, 2))
        freqs_i = torch.cat([
            freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ],
            dim=-1).reshape(seq_len, 1, -1)

        # apply rotary embedding
        x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
        x_i = torch.cat([x_i, x[i, seq_len:]])

        # append to collection
        output.append(x_i)
    return torch.stack(output).type_as(x)


class CausalWanSelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 num_heads,
                 local_attn_size=-1,
                 sink_size=0,
                 qk_norm=True,
                 eps=1e-6):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.local_attn_size = local_attn_size
        self.sink_size = sink_size
        self.qk_norm = qk_norm
        self.eps = eps
        self.max_attention_size = 32760 if local_attn_size == -1 else local_attn_size * 1560

        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(
        self,
        x,
        seq_lens,
        grid_sizes,
        freqs,
        block_mask,
        kv_cache=None,
        current_start=0,
        cache_start=None
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
            block_mask (BlockMask)
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
        if cache_start is None:
            cache_start = current_start

        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n, d)
            return q, k, v

        q, k, v = qkv_fn(x)

        if kv_cache is None:
            # if it is teacher forcing training?
            is_tf = (s == seq_lens[0].item() * 2)
            if is_tf:
                q_chunk = torch.chunk(q, 2, dim=1)
                k_chunk = torch.chunk(k, 2, dim=1)
                roped_query = []
                roped_key = []
                # rope should be same for clean and noisy parts
                for ii in range(2):
                    rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v)
                    rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v)
                    roped_query.append(rq)
                    roped_key.append(rk)

                roped_query = torch.cat(roped_query, dim=1)
                roped_key = torch.cat(roped_key, dim=1)

                padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
                padded_roped_query = torch.cat(
                    [roped_query,
                     torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
                                 device=q.device, dtype=v.dtype)],
                    dim=1
                )

                padded_roped_key = torch.cat(
                    [roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
                                            device=k.device, dtype=v.dtype)],
                    dim=1
                )

                padded_v = torch.cat(
                    [v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
                                    device=v.device, dtype=v.dtype)],
                    dim=1
                )

                x = flex_attention(
                    query=padded_roped_query.transpose(2, 1),
                    key=padded_roped_key.transpose(2, 1),
                    value=padded_v.transpose(2, 1),
                    block_mask=block_mask
                )[:, :, :-padded_length].transpose(2, 1)

            else:
                roped_query = rope_apply(q, grid_sizes, freqs).type_as(v)
                roped_key = rope_apply(k, grid_sizes, freqs).type_as(v)

                padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
                padded_roped_query = torch.cat(
                    [roped_query,
                     torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
                                 device=q.device, dtype=v.dtype)],
                    dim=1
                )

                padded_roped_key = torch.cat(
                    [roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
                                            device=k.device, dtype=v.dtype)],
                    dim=1
                )

                padded_v = torch.cat(
                    [v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
                                    device=v.device, dtype=v.dtype)],
                    dim=1
                )

                x = flex_attention(
                    query=padded_roped_query.transpose(2, 1),
                    key=padded_roped_key.transpose(2, 1),
                    value=padded_v.transpose(2, 1),
                    block_mask=block_mask
                )[:, :, :-padded_length].transpose(2, 1)
        else:
            frame_seqlen = math.prod(grid_sizes[0][1:]).item()
            current_start_frame = current_start // frame_seqlen
            roped_query = causal_rope_apply(
                q, grid_sizes, freqs, start_frame=current_start_frame).type_as(v)
            roped_key = causal_rope_apply(
                k, grid_sizes, freqs, start_frame=current_start_frame).type_as(v)

            current_end = current_start + roped_query.shape[1]
            sink_tokens = self.sink_size * frame_seqlen
            # If we are using local attention and the current KV cache size is larger than the local attention size, we need to truncate the KV cache
            kv_cache_size = kv_cache["k"].shape[1]
            num_new_tokens = roped_query.shape[1]
            if self.local_attn_size != -1 and (current_end > kv_cache["global_end_index"].item()) and (
                    num_new_tokens + kv_cache["local_end_index"].item() > kv_cache_size):
                # Calculate the number of new tokens added in this step
                # Shift existing cache content left to discard oldest tokens
                # Clone the source slice to avoid overlapping memory error
                num_evicted_tokens = num_new_tokens + kv_cache["local_end_index"].item() - kv_cache_size
                num_rolled_tokens = kv_cache["local_end_index"].item() - num_evicted_tokens - sink_tokens
                kv_cache["k"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \
                    kv_cache["k"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone()
                kv_cache["v"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \
                    kv_cache["v"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone()
                # Insert the new keys/values at the end
                local_end_index = kv_cache["local_end_index"].item() + current_end - \
                    kv_cache["global_end_index"].item() - num_evicted_tokens
                local_start_index = local_end_index - num_new_tokens
                kv_cache["k"][:, local_start_index:local_end_index] = roped_key
                kv_cache["v"][:, local_start_index:local_end_index] = v
            else:
                # Assign new keys/values directly up to current_end
                local_end_index = kv_cache["local_end_index"].item() + current_end - kv_cache["global_end_index"].item()
                local_start_index = local_end_index - num_new_tokens
                kv_cache["k"][:, local_start_index:local_end_index] = roped_key
                kv_cache["v"][:, local_start_index:local_end_index] = v
            x = attention(
                roped_query,
                kv_cache["k"][:, max(0, local_end_index - self.max_attention_size):local_end_index],
                kv_cache["v"][:, max(0, local_end_index - self.max_attention_size):local_end_index]
            )
            kv_cache["global_end_index"].fill_(current_end)
            kv_cache["local_end_index"].fill_(local_end_index)

        # output
        x = x.flatten(2)
        x = x.to(self.o.weight.dtype)
        x = self.o(x)
        return x


class CausalWanAttentionBlock(nn.Module):

    def __init__(self,
                 cross_attn_type,
                 dim,
                 ffn_dim,
                 num_heads,
                 local_attn_size=-1,
                 sink_size=0,
                 qk_norm=True,
                 cross_attn_norm=False,
                 eps=1e-6):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.local_attn_size = local_attn_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # layers
        self.norm1 = WanLayerNorm(dim, eps)
        self.self_attn = CausalWanSelfAttention(dim, num_heads, local_attn_size, sink_size, qk_norm, eps)
        self.norm3 = WanLayerNorm(
            dim, eps,
            elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
                                                                      num_heads,
                                                                      (-1, -1),
                                                                      qk_norm,
                                                                      eps)
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(
            nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
            nn.Linear(ffn_dim, dim))

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)

    def forward(
        self,
        x,
        e,
        seq_lens,
        grid_sizes,
        freqs,
        context,
        context_lens,
        block_mask,
        kv_cache=None,
        crossattn_cache=None,
        current_start=0,
        cache_start=None
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, F, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
        # assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2)
        # assert e[0].dtype == torch.float32

        # self-attention
        y = self.self_attn(
            (self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]).flatten(1, 2),
            seq_lens, grid_sizes,
            freqs, block_mask, kv_cache, current_start, cache_start)

        # with amp.autocast(dtype=torch.float32):
        x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(1, 2)

        # cross-attention & ffn function
        def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None):
            x = x + self.cross_attn(self.norm3(x), context,
                                    context_lens, crossattn_cache=crossattn_cache)
            y = self.ffn(
                (self.norm2(x).unflatten(dim=1, sizes=(num_frames,
                 frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2)
            )
            # with amp.autocast(dtype=torch.float32):
            x = x + (y.unflatten(dim=1, sizes=(num_frames,
                     frame_seqlen)) * e[5]).flatten(1, 2)
            return x

        x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache)
        return x


class CausalHead(nn.Module):

    def __init__(self, dim, out_dim, patch_size, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps

        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = WanLayerNorm(dim, eps)
        self.head = nn.Linear(dim, out_dim)

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)

    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, F, 1, C]
        """
        # assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
        e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2)
        x = (self.head(self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]))
        return x


class CausalWanModel(ModelMixin, ConfigMixin):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """

    ignore_for_config = [
        'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim'
    ]
    _no_split_modules = ['WanAttentionBlock']
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(self,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 local_attn_size=-1,
                 sink_size=0,
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        r"""
        Initialize the diffusion model backbone.

        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            local_attn_size (`int`, *optional*, defaults to -1):
                Window size for temporal local attention (-1 indicates global attention)
            sink_size (`int`, *optional*, defaults to 0):
                Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """

        super().__init__()

        assert model_type in ['t2v', 'i2v']
        self.model_type = model_type

        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.local_attn_size = local_attn_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # embeddings
        self.patch_embedding = nn.Conv3d(
            in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(
            nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
            nn.Linear(dim, dim))

        self.time_embedding = nn.Sequential(
            nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
        self.time_projection = nn.Sequential(
            nn.SiLU(), nn.Linear(dim, dim * 6))

        # blocks
        cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
        self.blocks = nn.ModuleList([
            CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
                                    local_attn_size, sink_size, qk_norm, cross_attn_norm, eps)
            for _ in range(num_layers)
        ])

        # head
        self.head = CausalHead(dim, out_dim, patch_size, eps)

        # buffers (don't use register_buffer otherwise dtype will be changed in to())
        assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
        d = dim // num_heads
        self.freqs = torch.cat([
            rope_params(1024, d - 4 * (d // 6)),
            rope_params(1024, 2 * (d // 6)),
            rope_params(1024, 2 * (d // 6))
        ],
            dim=1)

        if model_type == 'i2v':
            self.img_emb = MLPProj(1280, dim)

        # initialize weights
        self.init_weights()

        self.gradient_checkpointing = False

        self.block_mask = None

        self.num_frame_per_block = 1
        self.independent_first_frame = False

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    @staticmethod
    def _prepare_blockwise_causal_attn_mask(
        device: torch.device | str, num_frames: int = 21,
        frame_seqlen: int = 1560, num_frame_per_block=1, local_attn_size=-1
    ) -> BlockMask:
        """
        we will divide the token sequence into the following format
        [1 latent frame] [1 latent frame] ... [1 latent frame]
        We use flexattention to construct the attention mask
        """
        total_length = num_frames * frame_seqlen

        # we do right padding to get to a multiple of 128
        padded_length = math.ceil(total_length / 128) * 128 - total_length

        ends = torch.zeros(total_length + padded_length,
                           device=device, dtype=torch.long)

        # Block-wise causal mask will attend to all elements that are before the end of the current chunk
        frame_indices = torch.arange(
            start=0,
            end=total_length,
            step=frame_seqlen * num_frame_per_block,
            device=device
        )

        for tmp in frame_indices:
            ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
                frame_seqlen * num_frame_per_block

        def attention_mask(b, h, q_idx, kv_idx):
            if local_attn_size == -1:
                return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
            else:
                return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | (q_idx == kv_idx)
            # return ((kv_idx < total_length) & (q_idx < total_length))  | (q_idx == kv_idx) # bidirectional mask

        block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
                                       KV_LEN=total_length + padded_length, _compile=False, device=device)

        import torch.distributed as dist
        if not dist.is_initialized() or dist.get_rank() == 0:
            print(
                f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
            print(block_mask)

        # import imageio
        # import numpy as np
        # from torch.nn.attention.flex_attention import create_mask

        # mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
        #                    padded_length, KV_LEN=total_length + padded_length, device=device)
        # import cv2
        # mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
        # imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))

        return block_mask

    @staticmethod
    def _prepare_teacher_forcing_mask(
        device: torch.device | str, num_frames: int = 21,
        frame_seqlen: int = 1560, num_frame_per_block=1
    ) -> BlockMask:
        """
        we will divide the token sequence into the following format
        [1 latent frame] [1 latent frame] ... [1 latent frame]
        We use flexattention to construct the attention mask
        """
        # debug
        DEBUG = False
        if DEBUG:
            num_frames = 9
            frame_seqlen = 256

        total_length = num_frames * frame_seqlen * 2

        # we do right padding to get to a multiple of 128
        padded_length = math.ceil(total_length / 128) * 128 - total_length

        clean_ends = num_frames * frame_seqlen
        # for clean context frames, we can construct their flex attention mask based on a [start, end] interval
        context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
        # for noisy frames, we need two intervals to construct the flex attention mask [context_start, context_end] [noisy_start, noisy_end]
        noise_context_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
        noise_context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
        noise_noise_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
        noise_noise_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)

        # Block-wise causal mask will attend to all elements that are before the end of the current chunk
        attention_block_size = frame_seqlen * num_frame_per_block
        frame_indices = torch.arange(
            start=0,
            end=num_frames * frame_seqlen,
            step=attention_block_size,
            device=device, dtype=torch.long
        )

        # attention for clean context frames
        for start in frame_indices:
            context_ends[start:start + attention_block_size] = start + attention_block_size

        noisy_image_start_list = torch.arange(
            num_frames * frame_seqlen, total_length,
            step=attention_block_size,
            device=device, dtype=torch.long
        )
        noisy_image_end_list = noisy_image_start_list + attention_block_size

        # attention for noisy frames
        for block_index, (start, end) in enumerate(zip(noisy_image_start_list, noisy_image_end_list)):
            # attend to noisy tokens within the same block
            noise_noise_starts[start:end] = start
            noise_noise_ends[start:end] = end
            # attend to context tokens in previous blocks
            # noise_context_starts[start:end] = 0
            noise_context_ends[start:end] = block_index * attention_block_size

        def attention_mask(b, h, q_idx, kv_idx):
            # first design the mask for clean frames
            clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx])
            # then design the mask for noisy frames
            # noisy frames will attend to all clean preceeding clean frames + itself
            C1 = (kv_idx < noise_noise_ends[q_idx]) & (kv_idx >= noise_noise_starts[q_idx])
            C2 = (kv_idx < noise_context_ends[q_idx]) & (kv_idx >= noise_context_starts[q_idx])
            noise_mask = (q_idx >= clean_ends) & (C1 | C2)

            eye_mask = q_idx == kv_idx
            return eye_mask | clean_mask | noise_mask

        block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
                                       KV_LEN=total_length + padded_length, _compile=False, device=device)

        if DEBUG:
            print(block_mask)
            import imageio
            import numpy as np
            from torch.nn.attention.flex_attention import create_mask

            mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
                               padded_length, KV_LEN=total_length + padded_length, device=device)
            import cv2
            mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
            imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))

        return block_mask

    @staticmethod
    def _prepare_blockwise_causal_attn_mask_i2v(
        device: torch.device | str, num_frames: int = 21,
        frame_seqlen: int = 1560, num_frame_per_block=4, local_attn_size=-1
    ) -> BlockMask:
        """
        we will divide the token sequence into the following format
        [1 latent frame] [N latent frame] ... [N latent frame]
        The first frame is separated out to support I2V generation
        We use flexattention to construct the attention mask
        """
        total_length = num_frames * frame_seqlen

        # we do right padding to get to a multiple of 128
        padded_length = math.ceil(total_length / 128) * 128 - total_length

        ends = torch.zeros(total_length + padded_length,
                           device=device, dtype=torch.long)

        # special handling for the first frame
        ends[:frame_seqlen] = frame_seqlen

        # Block-wise causal mask will attend to all elements that are before the end of the current chunk
        frame_indices = torch.arange(
            start=frame_seqlen,
            end=total_length,
            step=frame_seqlen * num_frame_per_block,
            device=device
        )

        for idx, tmp in enumerate(frame_indices):
            ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
                frame_seqlen * num_frame_per_block

        def attention_mask(b, h, q_idx, kv_idx):
            if local_attn_size == -1:
                return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
            else:
                return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | \
                    (q_idx == kv_idx)

        block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
                                       KV_LEN=total_length + padded_length, _compile=False, device=device)

        if not dist.is_initialized() or dist.get_rank() == 0:
            print(
                f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
            print(block_mask)

        # import imageio
        # import numpy as np
        # from torch.nn.attention.flex_attention import create_mask

        # mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
        #                    padded_length, KV_LEN=total_length + padded_length, device=device)
        # import cv2
        # mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
        # imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))

        return block_mask

    def _forward_inference(
        self,
        x,
        t,
        context,
        seq_len,
        clip_fea=None,
        y=None,
        kv_cache: dict = None,
        crossattn_cache: dict = None,
        current_start: int = 0,
        cache_start: int = 0
    ):
        r"""
        Run the diffusion model with kv caching.
        See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details.
        This function will be run for num_frame times.
        Process the latent frames one by one (1560 tokens each)

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """

        if self.model_type == 'i2v':
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        if y is not None:
            x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat(x)
        """
        torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])
        """

        # time embeddings
        # with amp.autocast(dtype=torch.float32):
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
        e0 = self.time_projection(e).unflatten(
            1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
        # assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))

        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)

        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens,
            block_mask=self.block_mask
        )

        def create_custom_forward(module):
            def custom_forward(*inputs, **kwargs):
                return module(*inputs, **kwargs)
            return custom_forward

        for block_index, block in enumerate(self.blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                kwargs.update(
                    {
                        "kv_cache": kv_cache[block_index],
                        "current_start": current_start,
                        "cache_start": cache_start
                    }
                )
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    x, **kwargs,
                    use_reentrant=False,
                )
            else:
                kwargs.update(
                    {
                        "kv_cache": kv_cache[block_index],
                        "crossattn_cache": crossattn_cache[block_index],
                        "current_start": current_start,
                        "cache_start": cache_start
                    }
                )
                x = block(x, **kwargs)

        # head
        x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        return torch.stack(x)

    def _forward_train(
        self,
        x,
        t,
        context,
        seq_len,
        clean_x=None,
        aug_t=None,
        clip_fea=None,
        y=None,
    ):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        if self.model_type == 'i2v':
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        # Construct blockwise causal attn mask
        if self.block_mask is None:
            if clean_x is not None:
                if self.independent_first_frame:
                    raise NotImplementedError()
                else:
                    self.block_mask = self._prepare_teacher_forcing_mask(
                        device, num_frames=x.shape[2],
                        frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
                        num_frame_per_block=self.num_frame_per_block
                    )
            else:
                if self.independent_first_frame:
                    self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v(
                        device, num_frames=x.shape[2],
                        frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
                        num_frame_per_block=self.num_frame_per_block,
                        local_attn_size=self.local_attn_size
                    )
                else:
                    self.block_mask = self._prepare_blockwise_causal_attn_mask(
                        device, num_frames=x.shape[2],
                        frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
                        num_frame_per_block=self.num_frame_per_block,
                        local_attn_size=self.local_attn_size
                    )

        if y is not None:
            x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]

        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]

        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])

        # time embeddings
        # with amp.autocast(dtype=torch.float32):
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
        e0 = self.time_projection(e).unflatten(
            1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
        # assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))

        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)

        if clean_x is not None:
            clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x]
            clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x]

            seq_lens_clean = torch.tensor([u.size(1) for u in clean_x], dtype=torch.long)
            assert seq_lens_clean.max() <= seq_len
            clean_x = torch.cat([
                torch.cat([u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))], dim=1) for u in clean_x
            ])

            x = torch.cat([clean_x, x], dim=1)
            if aug_t is None:
                aug_t = torch.zeros_like(t)
            e_clean = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x))
            e0_clean = self.time_projection(e_clean).unflatten(
                1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
            e0 = torch.cat([e0_clean, e0], dim=1)

        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens,
            block_mask=self.block_mask)

        def create_custom_forward(module):
            def custom_forward(*inputs, **kwargs):
                return module(*inputs, **kwargs)
            return custom_forward

        for block in self.blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    x, **kwargs,
                    use_reentrant=False,
                )
            else:
                x = block(x, **kwargs)

        if clean_x is not None:
            x = x[:, x.shape[1] // 2:]

        # head
        x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))

        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        return torch.stack(x)

    def forward(
        self,
        *args,
        **kwargs
    ):
        if kwargs.get('kv_cache', None) is not None:
            return self._forward_inference(*args, **kwargs)
        else:
            return self._forward_train(*args, **kwargs)

    def unpatchify(self, x, grid_sizes):
        r"""
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        out = []
        for u, v in zip(x, grid_sizes.tolist()):
            u = u[:math.prod(v)].view(*v, *self.patch_size, c)
            u = torch.einsum('fhwpqrc->cfphqwr', u)
            u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
            out.append(u)
        return out

    def init_weights(self):
        r"""
        Initialize model parameters using Xavier initialization.
        """

        # basic init
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

        # init embeddings
        nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
        for m in self.text_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)
        for m in self.time_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)

        # init output layer
        nn.init.zeros_(self.head.head.weight)