File size: 7,346 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from utils.lmdb import get_array_shape_from_lmdb, retrieve_row_from_lmdb
from torch.utils.data import Dataset
import numpy as np
import torch
import lmdb
import json
from pathlib import Path
from PIL import Image
import os


class TextDataset(Dataset):
    def __init__(self, prompt_path, extended_prompt_path=None):
        with open(prompt_path, encoding="utf-8") as f:
            self.prompt_list = [line.rstrip() for line in f]

        if extended_prompt_path is not None:
            with open(extended_prompt_path, encoding="utf-8") as f:
                self.extended_prompt_list = [line.rstrip() for line in f]
            assert len(self.extended_prompt_list) == len(self.prompt_list)
        else:
            self.extended_prompt_list = None

    def __len__(self):
        return len(self.prompt_list)

    def __getitem__(self, idx):
        batch = {
            "prompts": self.prompt_list[idx],
            "idx": idx,
        }
        if self.extended_prompt_list is not None:
            batch["extended_prompts"] = self.extended_prompt_list[idx]
        return batch


class ODERegressionLMDBDataset(Dataset):
    def __init__(self, data_path: str, max_pair: int = int(1e8)):
        self.env = lmdb.open(data_path, readonly=True,
                             lock=False, readahead=False, meminit=False)

        self.latents_shape = get_array_shape_from_lmdb(self.env, 'latents')
        self.max_pair = max_pair

    def __len__(self):
        return min(self.latents_shape[0], self.max_pair)

    def __getitem__(self, idx):
        """
        Outputs:
            - prompts: List of Strings
            - latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
        """
        latents = retrieve_row_from_lmdb(
            self.env,
            "latents", np.float16, idx, shape=self.latents_shape[1:]
        )

        if len(latents.shape) == 4:
            latents = latents[None, ...]

        prompts = retrieve_row_from_lmdb(
            self.env,
            "prompts", str, idx
        )
        return {
            "prompts": prompts,
            "ode_latent": torch.tensor(latents, dtype=torch.float32)
        }


class ShardingLMDBDataset(Dataset):
    def __init__(self, data_path: str, max_pair: int = int(1e8)):
        self.envs = []
        self.index = []

        for fname in sorted(os.listdir(data_path)):
            path = os.path.join(data_path, fname)
            env = lmdb.open(path,
                            readonly=True,
                            lock=False,
                            readahead=False,
                            meminit=False)
            self.envs.append(env)

        self.latents_shape = [None] * len(self.envs)
        for shard_id, env in enumerate(self.envs):
            self.latents_shape[shard_id] = get_array_shape_from_lmdb(env, 'latents')
            for local_i in range(self.latents_shape[shard_id][0]):
                self.index.append((shard_id, local_i))

            # print("shard_id ", shard_id, " local_i ", local_i)

        self.max_pair = max_pair

    def __len__(self):
        return len(self.index)

    def __getitem__(self, idx):
        """
            Outputs:
                - prompts: List of Strings
                - latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
        """
        shard_id, local_idx = self.index[idx]

        latents = retrieve_row_from_lmdb(
            self.envs[shard_id],
            "latents", np.float16, local_idx,
            shape=self.latents_shape[shard_id][1:]
        )

        if len(latents.shape) == 4:
            latents = latents[None, ...]

        prompts = retrieve_row_from_lmdb(
            self.envs[shard_id],
            "prompts", str, local_idx
        )

        return {
            "prompts": prompts,
            "ode_latent": torch.tensor(latents, dtype=torch.float32)
        }


class TextImagePairDataset(Dataset):
    def __init__(
        self,
        data_dir,
        transform=None,
        eval_first_n=-1,
        pad_to_multiple_of=None
    ):
        """
        Args:
            data_dir (str): Path to the directory containing:
                - target_crop_info_*.json (metadata file)
                - */ (subdirectory containing images with matching aspect ratio)
            transform (callable, optional): Optional transform to be applied on the image
        """
        self.transform = transform
        data_dir = Path(data_dir)

        # Find the metadata JSON file
        metadata_files = list(data_dir.glob('target_crop_info_*.json'))
        if not metadata_files:
            raise FileNotFoundError(f"No metadata file found in {data_dir}")
        if len(metadata_files) > 1:
            raise ValueError(f"Multiple metadata files found in {data_dir}")

        metadata_path = metadata_files[0]
        # Extract aspect ratio from metadata filename (e.g. target_crop_info_26-15.json -> 26-15)
        aspect_ratio = metadata_path.stem.split('_')[-1]

        # Use aspect ratio subfolder for images
        self.image_dir = data_dir / aspect_ratio
        if not self.image_dir.exists():
            raise FileNotFoundError(f"Image directory not found: {self.image_dir}")

        # Load metadata
        with open(metadata_path, 'r') as f:
            self.metadata = json.load(f)

        eval_first_n = eval_first_n if eval_first_n != -1 else len(self.metadata)
        self.metadata = self.metadata[:eval_first_n]

        # Verify all images exist
        for item in self.metadata:
            image_path = self.image_dir / item['file_name']
            if not image_path.exists():
                raise FileNotFoundError(f"Image not found: {image_path}")

        self.dummy_prompt = "DUMMY PROMPT"
        self.pre_pad_len = len(self.metadata)
        if pad_to_multiple_of is not None and len(self.metadata) % pad_to_multiple_of != 0:
            # Duplicate the last entry
            self.metadata += [self.metadata[-1]] * (
                pad_to_multiple_of - len(self.metadata) % pad_to_multiple_of
            )

    def __len__(self):
        return len(self.metadata)

    def __getitem__(self, idx):
        """
        Returns:
            dict: A dictionary containing:
                - image: PIL Image
                - caption: str
                - target_bbox: list of int [x1, y1, x2, y2]
                - target_ratio: str
                - type: str
                - origin_size: tuple of int (width, height)
        """
        item = self.metadata[idx]

        # Load image
        image_path = self.image_dir / item['file_name']
        image = Image.open(image_path).convert('RGB')

        # Apply transform if specified
        if self.transform:
            image = self.transform(image)

        return {
            'image': image,
            'prompts': item['caption'],
            'target_bbox': item['target_crop']['target_bbox'],
            'target_ratio': item['target_crop']['target_ratio'],
            'type': item['type'],
            'origin_size': (item['origin_width'], item['origin_height']),
            'idx': idx
        }


def cycle(dl):
    while True:
        for data in dl:
            yield data