Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,791 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gc
import logging
from utils.dataset import ODERegressionLMDBDataset, cycle
from model import ODERegression
from collections import defaultdict
from utils.misc import (
set_seed
)
import torch.distributed as dist
from omegaconf import OmegaConf
import torch
import wandb
import time
import os
from utils.distributed import barrier, fsdp_wrap, fsdp_state_dict, launch_distributed_job
class Trainer:
def __init__(self, config):
self.config = config
self.step = 0
# Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
launch_distributed_job()
global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
self.device = torch.cuda.current_device()
self.is_main_process = global_rank == 0
self.disable_wandb = config.disable_wandb
# use a random seed for the training
if config.seed == 0:
random_seed = torch.randint(0, 10000000, (1,), device=self.device)
dist.broadcast(random_seed, src=0)
config.seed = random_seed.item()
set_seed(config.seed + global_rank)
if self.is_main_process and not self.disable_wandb:
wandb.login(host=config.wandb_host, key=config.wandb_key)
wandb.init(
config=OmegaConf.to_container(config, resolve=True),
name=config.config_name,
mode="online",
entity=config.wandb_entity,
project=config.wandb_project,
dir=config.wandb_save_dir
)
self.output_path = config.logdir
# Step 2: Initialize the model and optimizer
assert config.distribution_loss == "ode", "Only ODE loss is supported for ODE training"
self.model = ODERegression(config, device=self.device)
self.model.generator = fsdp_wrap(
self.model.generator,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.generator_fsdp_wrap_strategy
)
self.model.text_encoder = fsdp_wrap(
self.model.text_encoder,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.text_encoder_fsdp_wrap_strategy,
cpu_offload=getattr(config, "text_encoder_cpu_offload", False)
)
if not config.no_visualize or config.load_raw_video:
self.model.vae = self.model.vae.to(
device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)
self.generator_optimizer = torch.optim.AdamW(
[param for param in self.model.generator.parameters()
if param.requires_grad],
lr=config.lr,
betas=(config.beta1, config.beta2),
weight_decay=config.weight_decay
)
# Step 3: Initialize the dataloader
dataset = ODERegressionLMDBDataset(
config.data_path, max_pair=getattr(config, "max_pair", int(1e8)))
sampler = torch.utils.data.distributed.DistributedSampler(
dataset, shuffle=True, drop_last=True)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=config.batch_size, sampler=sampler, num_workers=8)
total_batch_size = getattr(config, "total_batch_size", None)
if total_batch_size is not None:
assert total_batch_size == config.batch_size * self.world_size, "Gradient accumulation is not supported for ODE training"
self.dataloader = cycle(dataloader)
self.step = 0
##############################################################################################################
# 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
if getattr(config, "generator_ckpt", False):
print(f"Loading pretrained generator from {config.generator_ckpt}")
state_dict = torch.load(config.generator_ckpt, map_location="cpu")[
'generator']
self.model.generator.load_state_dict(
state_dict, strict=True
)
##############################################################################################################
self.max_grad_norm = 10.0
self.previous_time = None
def save(self):
print("Start gathering distributed model states...")
generator_state_dict = fsdp_state_dict(
self.model.generator)
state_dict = {
"generator": generator_state_dict
}
if self.is_main_process:
os.makedirs(os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}"), exist_ok=True)
torch.save(state_dict, os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
print("Model saved to", os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
def train_one_step(self):
VISUALIZE = self.step % 100 == 0
self.model.eval() # prevent any randomness (e.g. dropout)
# Step 1: Get the next batch of text prompts
batch = next(self.dataloader)
text_prompts = batch["prompts"]
ode_latent = batch["ode_latent"].to(
device=self.device, dtype=self.dtype)
# Step 2: Extract the conditional infos
with torch.no_grad():
conditional_dict = self.model.text_encoder(
text_prompts=text_prompts)
# Step 3: Train the generator
generator_loss, log_dict = self.model.generator_loss(
ode_latent=ode_latent,
conditional_dict=conditional_dict
)
unnormalized_loss = log_dict["unnormalized_loss"]
timestep = log_dict["timestep"]
if self.world_size > 1:
gathered_unnormalized_loss = torch.zeros(
[self.world_size, *unnormalized_loss.shape],
dtype=unnormalized_loss.dtype, device=self.device)
gathered_timestep = torch.zeros(
[self.world_size, *timestep.shape],
dtype=timestep.dtype, device=self.device)
dist.all_gather_into_tensor(
gathered_unnormalized_loss, unnormalized_loss)
dist.all_gather_into_tensor(gathered_timestep, timestep)
else:
gathered_unnormalized_loss = unnormalized_loss
gathered_timestep = timestep
loss_breakdown = defaultdict(list)
stats = {}
for index, t in enumerate(timestep):
loss_breakdown[str(int(t.item()) // 250 * 250)].append(
unnormalized_loss[index].item())
for key_t in loss_breakdown.keys():
stats["loss_at_time_" + key_t] = sum(loss_breakdown[key_t]) / \
len(loss_breakdown[key_t])
self.generator_optimizer.zero_grad()
generator_loss.backward()
generator_grad_norm = self.model.generator.clip_grad_norm_(
self.max_grad_norm)
self.generator_optimizer.step()
# Step 4: Visualization
if VISUALIZE and not self.config.no_visualize and not self.config.disable_wandb and self.is_main_process:
# Visualize the input, output, and ground truth
input = log_dict["input"]
output = log_dict["output"]
ground_truth = ode_latent[:, -1]
input_video = self.model.vae.decode_to_pixel(input)
output_video = self.model.vae.decode_to_pixel(output)
ground_truth_video = self.model.vae.decode_to_pixel(ground_truth)
input_video = 255.0 * (input_video.cpu().numpy() * 0.5 + 0.5)
output_video = 255.0 * (output_video.cpu().numpy() * 0.5 + 0.5)
ground_truth_video = 255.0 * (ground_truth_video.cpu().numpy() * 0.5 + 0.5)
# Visualize the input, output, and ground truth
wandb.log({
"input": wandb.Video(input_video, caption="Input", fps=16, format="mp4"),
"output": wandb.Video(output_video, caption="Output", fps=16, format="mp4"),
"ground_truth": wandb.Video(ground_truth_video, caption="Ground Truth", fps=16, format="mp4"),
}, step=self.step)
# Step 5: Logging
if self.is_main_process and not self.disable_wandb:
wandb_loss_dict = {
"generator_loss": generator_loss.item(),
"generator_grad_norm": generator_grad_norm.item(),
**stats
}
wandb.log(wandb_loss_dict, step=self.step)
if self.step % self.config.gc_interval == 0:
if dist.get_rank() == 0:
logging.info("DistGarbageCollector: Running GC.")
gc.collect()
def train(self):
while True:
self.train_one_step()
if (not self.config.no_save) and self.step % self.config.log_iters == 0:
self.save()
torch.cuda.empty_cache()
barrier()
if self.is_main_process:
current_time = time.time()
if self.previous_time is None:
self.previous_time = current_time
else:
if not self.disable_wandb:
wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
self.previous_time = current_time
self.step += 1
|