File size: 6,981 Bytes
ea02521
273b01b
 
2a06b1f
0bc7df2
 
273b01b
 
 
2a06b1f
273b01b
 
 
 
 
80db606
dce996d
80db606
273b01b
 
2a06b1f
6a7b482
940de5b
6a7b482
 
 
 
940de5b
 
 
 
 
 
6a7b482
940de5b
6a7b482
 
273b01b
 
 
 
 
 
 
 
 
6a7b482
dce996d
 
 
 
 
 
 
 
 
 
 
 
 
273b01b
dce996d
 
 
 
 
6257581
 
dce996d
 
 
273b01b
 
 
 
34035f1
273b01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a06b1f
 
6323c73
2eee636
 
 
1d1bb6e
ab5da9e
d8c258c
 
 
b3e0e63
 
 
2eee636
6323c73
d8c258c
 
 
 
 
4893eed
0bc7df2
 
2a06b1f
 
 
0bc7df2
 
8fbaa9e
 
 
 
 
 
 
 
 
 
 
 
0bc7df2
 
b5b30fd
0238b02
1bb0117
0415fd2
ac1a0c2
 
dce996d
0bc7df2
dce996d
 
0238b02
0bc7df2
 
9b29685
dce996d
0238b02
dce996d
9b29685
 
dce996d
0bc7df2
 
 
 
6a7b482
0bc7df2
6a7b482
 
 
 
 
 
 
 
 
0238b02
6a7b482
0bc7df2
2a06b1f
 
97dc2fb
bb1f9a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
from google import genai 
from google.genai import types 
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile

# --- Google Gemini API Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY environment variable not set.")

client = genai.Client(
    api_key=os.environ.get("GOOGLE_API_KEY"),
)

GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'

def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
    """Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
    if not token:
        return False
    try:
        user_info = whoami(token=token.token)
        if user_info.get("isPro", False):
            return True
        orgs = user_info.get("orgs", [])
        if any(org.get("isEnterprise", False) for org in orgs):
            return True
        return False
    except Exception as e:
        print(f"Could not verify user's PRO/Enterprise status: {e}")
        return False

def _extract_image_data_from_response(response) -> Optional[bytes]:
    """Helper to extract image data from the model's response."""
    if hasattr(response, 'candidates') and response.candidates:
        for candidate in response.candidates:
            if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                for part in candidate.content.parts:
                    if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                        return part.inline_data.data
    return None

def unified_image_generator(
    prompt: str, 
    images: Optional[List[str]] = None,
    oauth_token: Optional[gr.OAuthToken] = None
) -> str:
    """
    Handles all image generation tasks based on the number of input images.
    - 0 images: Text-to-image
    - 1+ images: Image-to-image (single or multi-modal)
    """
    if not verify_pro_status(oauth_token):
        raise gr.Error("Access Denied. This service is for PRO users only.")

    try:
        # Dynamically build the 'contents' list for the API
        contents = []
        if images:
            # If there are images, open them and add to contents
            for image_path in images:
                print(image_path)
                contents.append(Image.open(image_path[0]))
        
        # Always add the prompt to the contents
        contents.append(prompt)

        response = client.models.generate_content( 
            model=GEMINI_MODEL_NAME,
            contents=contents,
        )
        
        image_data = _extract_image_data_from_response(response)
        
        if not image_data:
            raise ValueError("No image data found in the model response.")

        # Save the generated image to a temporary file to return its path
        pil_image = Image.open(BytesIO(image_data))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
            pil_image.save(tmpfile.name)
            return tmpfile.name

    except Exception as e:
        raise gr.Error(f"Image generation failed: {e}")


# --- Gradio App UI ---
css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
.grid-container {display: grid;grid-template-columns: repeat(2, 1fr)}
.grid-container:has(> .gallery-item:only-child) {grid-template-columns: 1fr}

'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    gr.HTML('''
    <img class="logo-dark" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='margin: 0 auto; max-width: 500px' />
    <img class="logo-light" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros_light.png' style='margin: 0 auto; max-width: 500px' />
    ''')
            
    gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='https://huggingface.co/pro?source=nana_banana' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")

    pro_message = gr.Markdown(visible=False)
    main_interface = gr.Column(visible=False)

    with main_interface:
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Group():
                    image_input_gallery = gr.Gallery(
                        label="Upload one or more images here. Leave empty for text-to-image",
                        file_types=["image"],
                        height="auto"
                    )
                            
                    prompt_input = gr.Textbox(
                        label="Prompt",
                        placeholder="Turns this photo into a masterpiece"
                    )
                    generate_button = gr.Button("Generate", variant="primary")

            with gr.Column(scale=1):
                output_image = gr.Image(label="Output", interactive=False, elem_id="output", type="filepath")
                use_image_button = gr.Button("♻️ Use this Image for Next Edit")
        gr.Markdown("## Thank you for being a PRO! 🤗")
    
    login_button = gr.LoginButton()
    
    # --- Event Handlers (SIMPLIFIED) ---
    generate_button.click(
        unified_image_generator,
        inputs=[prompt_input, image_input_gallery], # Inputs are now just the prompt and the single gallery
        outputs=[output_image],
    )

    use_image_button.click(
        lambda img_path: [img_path] if img_path else None, 
        inputs=[output_image],
        outputs=[image_input_gallery]
    )

    # --- Access Control Logic (UNCHANGED) ---
    def control_access(
        profile: Optional[gr.OAuthProfile] = None,
        oauth_token: Optional[gr.OAuthToken] = None
    ):
        if not profile:
            return gr.update(visible=False), gr.update(visible=False)
        if verify_pro_status(oauth_token):
            return gr.update(visible=True), gr.update(visible=False)
        else:
            message = (
                "## ✨ Exclusive Access for PRO Users\n\n"
                "Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
                "To unlock this and many other benefits, please consider upgrading your account.\n\n"
                "### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
            )
            return gr.update(visible=False), gr.update(visible=True, value=message)

    demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])

if __name__ == "__main__":
    demo.queue(max_size=None, default_concurrency_limit=None)
    demo.launch()