File size: 107,161 Bytes
1b1b0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
# Disco Diffusion v5 [w/ 3D animation] (modified by @softology to work on Visions of Chaos and further modified by @multimodalart to run on MindsEye)
# Adapted from the Visions of Chaos software (https://softology.pro/voc.htm), that adapted it from the
# Original file is located at https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb

# required models
# https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt
# https://cloudflare-ipfs.com/ipfs/Qmd2mMnDLWePKmgfS8m6ntAg4nhV5VkUyAydYBp8cWWeB7/AdaBins_nyu.pt
# git clone https://github.com/isl-org/MiDaS.git
# git clone https://github.com/alembics/disco-diffusion.git


"""#Tutorial

**Diffusion settings (Defaults are heavily outdated)**
---

This section is outdated as of v2

Setting | Description | Default
--- | --- | ---
**Your vision:**
`text_prompts` | A description of what you'd like the machine to generate. Think of it like writing the caption below your image on a website. | N/A
`image_prompts` | Think of these images more as a description of their contents. | N/A
**Image quality:**
`clip_guidance_scale`  | Controls how much the image should look like the prompt. | 1000
`tv_scale` |  Controls the smoothness of the final output. | 150
`range_scale` |  Controls how far out of range RGB values are allowed to be. | 150
`sat_scale` | Controls how much saturation is allowed. From nshepperd's JAX notebook. | 0
`cutn` | Controls how many crops to take from the image. | 16
`cutn_batches` | Accumulate CLIP gradient from multiple batches of cuts  | 2
**Init settings:**
`init_image` |   URL or local path | None
`init_scale` |  This enhances the effect of the init image, a good value is 1000 | 0
`skip_steps Controls the starting point along the diffusion timesteps | 0
`perlin_init` |  Option to start with random perlin noise | False
`perlin_mode` |  ('gray', 'color') | 'mixed'
**Advanced:**
`skip_augs` |Controls whether to skip torchvision augmentations | False
`randomize_class` |Controls whether the imagenet class is randomly changed each iteration | True
`clip_denoised` |Determines whether CLIP discriminates a noisy or denoised image | False
`clamp_grad` |Experimental: Using adaptive clip grad in the cond_fn | True
`seed`  | Choose a random seed and print it at end of run for reproduction | random_seed
`fuzzy_prompt` | Controls whether to add multiple noisy prompts to the prompt losses | False
`rand_mag` |Controls the magnitude of the random noise | 0.1
`eta` | DDIM hyperparameter | 0.5

..

**Model settings**
---

Setting | Description | Default
--- | --- | ---
**Diffusion:**
`timestep_respacing`  | Modify this value to decrease the number of timesteps. | ddim100
`diffusion_steps` || 1000
**Diffusion:**
`clip_models`  | Models of CLIP to load. Typically the more, the better but they all come at a hefty VRAM cost. | ViT-B/32, ViT-B/16, RN50x4

# 1. Set Up
"""


is_colab = False
google_drive = False
save_models_to_google_drive = False

import sys

sys.stdout.write("Imports ...\n")
sys.stdout.flush()

sys.path.append("./ResizeRight")
sys.path.append("./MiDaS")
sys.path.append("./CLIP")
sys.path.append("./guided-diffusion")
sys.path.append("./latent-diffusion")
sys.path.append(".")
sys.path.append("./taming-transformers")
sys.path.append("./disco-diffusion")
sys.path.append("./AdaBins")
sys.path.append('./pytorch3d-lite')
# sys.path.append('./pytorch3d')

import os
import streamlit as st
from os import path
from os.path import exists as path_exists
import sys
import torch

# sys.path.append('./SLIP')
from dataclasses import dataclass
from functools import partial
import cv2
import pandas as pd
import gc
import io
import math
import timm
from IPython import display
import lpips
from PIL import Image, ImageOps
import requests
from glob import glob
import json
from types import SimpleNamespace
from torch import nn
from torch.nn import functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as TF
import shutil
from pathvalidate import sanitize_filename

# from tqdm.notebook import tqdm
# from stqdm_local import stqdm
import clip
from resize_right import resize

# from models import SLIP_VITB16, SLIP, SLIP_VITL16
from guided_diffusion.script_util import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
)
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import random
from ipywidgets import Output
import hashlib
import ipywidgets as widgets
import os

# from taming.models import vqgan # checking correct import from taming
from torchvision.datasets.utils import download_url
from functools import partial
from ldm.util import instantiate_from_config
from ldm.modules.diffusionmodules.util import (
    make_ddim_sampling_parameters,
    make_ddim_timesteps,
    noise_like,
)

# from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import ismap
from IPython.display import Image as ipyimg
from numpy import asarray
from einops import rearrange, repeat
import torch, torchvision
import time
from omegaconf import OmegaConf
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet
import torch
import py3d_tools as p3dT
import disco_xform_utils as dxf
import argparse

sys.stdout.write("Parsing arguments ...\n")
sys.stdout.flush()


def run_model(args2, status, stoutput, DefaultPaths):
    if args2.seed is not None:
        sys.stdout.write(f"Setting seed to {args2.seed} ...\n")
        sys.stdout.flush()
        status.write(f"Setting seed to {args2.seed} ...\n")
        import numpy as np

        np.random.seed(args2.seed)
        import random

        random.seed(args2.seed)
        # next line forces deterministic random values, but causes other issues with resampling (uncomment to see)
        # torch.use_deterministic_algorithms(True)
        torch.manual_seed(args2.seed)
        torch.cuda.manual_seed(args2.seed)
        torch.cuda.manual_seed_all(args2.seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("Using device:", DEVICE)
    device = DEVICE  # At least one of the modules expects this name..

    # If running locally, there's a good chance your env will need this in order to not crash upon np.matmul() or similar operations.
    os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

    PROJECT_DIR = os.path.abspath(os.getcwd())

    # AdaBins stuff
    USE_ADABINS = True
    if USE_ADABINS:
        sys.path.append("./AdaBins")
        from infer import InferenceHelper

        MAX_ADABINS_AREA = 500000

    model_256_downloaded = False
    model_512_downloaded = False
    model_secondary_downloaded = False

    # Initialize MiDaS depth model.
    # It remains resident in VRAM and likely takes around 2GB VRAM.
    # You could instead initialize it for each frame (and free it after each frame) to save VRAM.. but initializing it is slow.
    default_models = {
        "midas_v21_small": f"{DefaultPaths.model_path}/midas_v21_small-70d6b9c8.pt",
        "midas_v21": f"{DefaultPaths.model_path}/midas_v21-f6b98070.pt",
        "dpt_large": f"{DefaultPaths.model_path}/dpt_large-midas-2f21e586.pt",
        "dpt_hybrid": f"{DefaultPaths.model_path}/dpt_hybrid-midas-501f0c75.pt",
        "dpt_hybrid_nyu": f"{DefaultPaths.model_path}/dpt_hybrid_nyu-2ce69ec7.pt",
    }

    def init_midas_depth_model(midas_model_type="dpt_large", optimize=True):
        midas_model = None
        net_w = None
        net_h = None
        resize_mode = None
        normalization = None

        print(f"Initializing MiDaS '{midas_model_type}' depth model...")
        # load network
        midas_model_path = default_models[midas_model_type]

        if midas_model_type == "dpt_large":  # DPT-Large
            midas_model = DPTDepthModel(
                path=midas_model_path,
                backbone="vitl16_384",
                non_negative=True,
            )
            net_w, net_h = 384, 384
            resize_mode = "minimal"
            normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        elif midas_model_type == "dpt_hybrid":  # DPT-Hybrid
            midas_model = DPTDepthModel(
                path=midas_model_path,
                backbone="vitb_rn50_384",
                non_negative=True,
            )
            net_w, net_h = 384, 384
            resize_mode = "minimal"
            normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        elif midas_model_type == "dpt_hybrid_nyu":  # DPT-Hybrid-NYU
            midas_model = DPTDepthModel(
                path=midas_model_path,
                backbone="vitb_rn50_384",
                non_negative=True,
            )
            net_w, net_h = 384, 384
            resize_mode = "minimal"
            normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        elif midas_model_type == "midas_v21":
            midas_model = MidasNet(midas_model_path, non_negative=True)
            net_w, net_h = 384, 384
            resize_mode = "upper_bound"
            normalization = NormalizeImage(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )
        elif midas_model_type == "midas_v21_small":
            midas_model = MidasNet_small(
                midas_model_path,
                features=64,
                backbone="efficientnet_lite3",
                exportable=True,
                non_negative=True,
                blocks={"expand": True},
            )
            net_w, net_h = 256, 256
            resize_mode = "upper_bound"
            normalization = NormalizeImage(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )
        else:
            print(f"midas_model_type '{midas_model_type}' not implemented")
            assert False

        midas_transform = T.Compose(
            [
                Resize(
                    net_w,
                    net_h,
                    resize_target=None,
                    keep_aspect_ratio=True,
                    ensure_multiple_of=32,
                    resize_method=resize_mode,
                    image_interpolation_method=cv2.INTER_CUBIC,
                ),
                normalization,
                PrepareForNet(),
            ]
        )

        midas_model.eval()

        if optimize == True:
            if DEVICE == torch.device("cuda"):
                midas_model = midas_model.to(memory_format=torch.channels_last)
                midas_model = midas_model.half()

        midas_model.to(DEVICE)

        print(f"MiDaS '{midas_model_type}' depth model initialized.")
        return midas_model, midas_transform, net_w, net_h, resize_mode, normalization

    # @title 1.5 Define necessary functions

    # https://gist.github.com/adefossez/0646dbe9ed4005480a2407c62aac8869

    def interp(t):
        return 3 * t**2 - 2 * t**3

    def perlin(width, height, scale=10, device=None):
        gx, gy = torch.randn(2, width + 1, height + 1, 1, 1, device=device)
        xs = torch.linspace(0, 1, scale + 1)[:-1, None].to(device)
        ys = torch.linspace(0, 1, scale + 1)[None, :-1].to(device)
        wx = 1 - interp(xs)
        wy = 1 - interp(ys)
        dots = 0
        dots += wx * wy * (gx[:-1, :-1] * xs + gy[:-1, :-1] * ys)
        dots += (1 - wx) * wy * (-gx[1:, :-1] * (1 - xs) + gy[1:, :-1] * ys)
        dots += wx * (1 - wy) * (gx[:-1, 1:] * xs - gy[:-1, 1:] * (1 - ys))
        dots += (1 - wx) * (1 - wy) * (-gx[1:, 1:] * (1 - xs) - gy[1:, 1:] * (1 - ys))
        return dots.permute(0, 2, 1, 3).contiguous().view(width * scale, height * scale)

    def perlin_ms(octaves, width, height, grayscale, device=device):
        out_array = [0.5] if grayscale else [0.5, 0.5, 0.5]
        # out_array = [0.0] if grayscale else [0.0, 0.0, 0.0]
        for i in range(1 if grayscale else 3):
            scale = 2 ** len(octaves)
            oct_width = width
            oct_height = height
            for oct in octaves:
                p = perlin(oct_width, oct_height, scale, device)
                out_array[i] += p * oct
                scale //= 2
                oct_width *= 2
                oct_height *= 2
        return torch.cat(out_array)

    def create_perlin_noise(octaves=[1, 1, 1, 1], width=2, height=2, grayscale=True):
        out = perlin_ms(octaves, width, height, grayscale)
        if grayscale:
            out = TF.resize(size=(side_y, side_x), img=out.unsqueeze(0))
            out = TF.to_pil_image(out.clamp(0, 1)).convert("RGB")
        else:
            out = out.reshape(-1, 3, out.shape[0] // 3, out.shape[1])
            out = TF.resize(size=(side_y, side_x), img=out)
            out = TF.to_pil_image(out.clamp(0, 1).squeeze())

        out = ImageOps.autocontrast(out)
        return out

    def regen_perlin():
        if perlin_mode == "color":
            init = create_perlin_noise(
                [1.5**-i * 0.5 for i in range(12)], 1, 1, False
            )
            init2 = create_perlin_noise(
                [1.5**-i * 0.5 for i in range(8)], 4, 4, False
            )
        elif perlin_mode == "gray":
            init = create_perlin_noise([1.5**-i * 0.5 for i in range(12)], 1, 1, True)
            init2 = create_perlin_noise([1.5**-i * 0.5 for i in range(8)], 4, 4, True)
        else:
            init = create_perlin_noise(
                [1.5**-i * 0.5 for i in range(12)], 1, 1, False
            )
            init2 = create_perlin_noise([1.5**-i * 0.5 for i in range(8)], 4, 4, True)

        init = (
            TF.to_tensor(init)
            .add(TF.to_tensor(init2))
            .div(2)
            .to(device)
            .unsqueeze(0)
            .mul(2)
            .sub(1)
        )
        del init2
        return init.expand(batch_size, -1, -1, -1)

    def fetch(url_or_path):
        if str(url_or_path).startswith("http://") or str(url_or_path).startswith(
            "https://"
        ):
            r = requests.get(url_or_path)
            r.raise_for_status()
            fd = io.BytesIO()
            fd.write(r.content)
            fd.seek(0)
            return fd
        return open(url_or_path, "rb")

    def read_image_workaround(path):
        """OpenCV reads images as BGR, Pillow saves them as RGB. Work around
        this incompatibility to avoid colour inversions."""
        im_tmp = cv2.imread(path)
        return cv2.cvtColor(im_tmp, cv2.COLOR_BGR2RGB)

    def parse_prompt(prompt):
        if prompt.startswith("http://") or prompt.startswith("https://"):
            vals = prompt.rsplit(":", 2)
            vals = [vals[0] + ":" + vals[1], *vals[2:]]
        else:
            vals = prompt.rsplit(":", 1)
        vals = vals + ["", "1"][len(vals) :]
        return vals[0], float(vals[1])

    def sinc(x):
        return torch.where(
            x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])
        )

    def lanczos(x, a):
        cond = torch.logical_and(-a < x, x < a)
        out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
        return out / out.sum()

    def ramp(ratio, width):
        n = math.ceil(width / ratio + 1)
        out = torch.empty([n])
        cur = 0
        for i in range(out.shape[0]):
            out[i] = cur
            cur += ratio
        return torch.cat([-out[1:].flip([0]), out])[1:-1]

    def resample(input, size, align_corners=True):
        n, c, h, w = input.shape
        dh, dw = size

        input = input.reshape([n * c, 1, h, w])

        if dh < h:
            kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
            pad_h = (kernel_h.shape[0] - 1) // 2
            input = F.pad(input, (0, 0, pad_h, pad_h), "reflect")
            input = F.conv2d(input, kernel_h[None, None, :, None])

        if dw < w:
            kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
            pad_w = (kernel_w.shape[0] - 1) // 2
            input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect")
            input = F.conv2d(input, kernel_w[None, None, None, :])

        input = input.reshape([n, c, h, w])
        return F.interpolate(input, size, mode="bicubic", align_corners=align_corners)

    class MakeCutouts(nn.Module):
        def __init__(self, cut_size, cutn, skip_augs=False):
            super().__init__()
            self.cut_size = cut_size
            self.cutn = cutn
            self.skip_augs = skip_augs
            self.augs = T.Compose(
                [
                    T.RandomHorizontalFlip(p=0.5),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomPerspective(distortion_scale=0.4, p=0.7),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomGrayscale(p=0.15),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
                ]
            )

        def forward(self, input):
            input = T.Pad(input.shape[2] // 4, fill=0)(input)
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)

            cutouts = []
            for ch in range(self.cutn):
                if ch > self.cutn - self.cutn // 4:
                    cutout = input.clone()
                else:
                    size = int(
                        max_size
                        * torch.zeros(
                            1,
                        )
                        .normal_(mean=0.8, std=0.3)
                        .clip(float(self.cut_size / max_size), 1.0)
                    )
                    offsetx = torch.randint(0, abs(sideX - size + 1), ())
                    offsety = torch.randint(0, abs(sideY - size + 1), ())
                    cutout = input[
                        :, :, offsety : offsety + size, offsetx : offsetx + size
                    ]

                if not self.skip_augs:
                    cutout = self.augs(cutout)
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
                del cutout

            cutouts = torch.cat(cutouts, dim=0)
            return cutouts

    cutout_debug = False
    padargs = {}

    class MakeCutoutsDango(nn.Module):
        def __init__(
            self, cut_size, Overview=4, InnerCrop=0, IC_Size_Pow=0.5, IC_Grey_P=0.2
        ):
            super().__init__()
            self.cut_size = cut_size
            self.Overview = Overview
            self.InnerCrop = InnerCrop
            self.IC_Size_Pow = IC_Size_Pow
            self.IC_Grey_P = IC_Grey_P
            if args.animation_mode == "None":
                self.augs = T.Compose(
                    [
                        T.RandomHorizontalFlip(p=0.5),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomAffine(
                            degrees=10,
                            translate=(0.05, 0.05),
                            interpolation=T.InterpolationMode.BILINEAR,
                        ),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomGrayscale(p=0.1),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.ColorJitter(
                            brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1
                        ),
                    ]
                )
            elif args.animation_mode == "Video Input":
                self.augs = T.Compose(
                    [
                        T.RandomHorizontalFlip(p=0.5),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomPerspective(distortion_scale=0.4, p=0.7),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomGrayscale(p=0.15),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
                    ]
                )
            elif args.animation_mode == "2D" or args.animation_mode == "3D":
                self.augs = T.Compose(
                    [
                        T.RandomHorizontalFlip(p=0.4),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomAffine(
                            degrees=10,
                            translate=(0.05, 0.05),
                            interpolation=T.InterpolationMode.BILINEAR,
                        ),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.RandomGrayscale(p=0.1),
                        T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                        T.ColorJitter(
                            brightness=0.1, contrast=0.1, saturation=0.1, hue=0.3
                        ),
                    ]
                )

        def forward(self, input):
            cutouts = []
            gray = T.Grayscale(3)
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            l_size = max(sideX, sideY)
            output_shape = [1, 3, self.cut_size, self.cut_size]
            output_shape_2 = [1, 3, self.cut_size + 2, self.cut_size + 2]
            pad_input = F.pad(
                input,
                (
                    (sideY - max_size) // 2,
                    (sideY - max_size) // 2,
                    (sideX - max_size) // 2,
                    (sideX - max_size) // 2,
                ),
                **padargs,
            )
            cutout = resize(pad_input, out_shape=output_shape)

            if self.Overview > 0:
                if self.Overview <= 4:
                    if self.Overview >= 1:
                        cutouts.append(cutout)
                    if self.Overview >= 2:
                        cutouts.append(gray(cutout))
                    if self.Overview >= 3:
                        cutouts.append(TF.hflip(cutout))
                    if self.Overview == 4:
                        cutouts.append(gray(TF.hflip(cutout)))
                else:
                    cutout = resize(pad_input, out_shape=output_shape)
                    for _ in range(self.Overview):
                        cutouts.append(cutout)

                if cutout_debug:
                    if is_colab:
                        TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save(
                            "/content/cutout_overview0.jpg", quality=99
                        )
                    else:
                        TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save(
                            "cutout_overview0.jpg", quality=99
                        )

            if self.InnerCrop > 0:
                for i in range(self.InnerCrop):
                    size = int(
                        torch.rand([]) ** self.IC_Size_Pow * (max_size - min_size)
                        + min_size
                    )
                    offsetx = torch.randint(0, sideX - size + 1, ())
                    offsety = torch.randint(0, sideY - size + 1, ())
                    cutout = input[
                        :, :, offsety : offsety + size, offsetx : offsetx + size
                    ]
                    if i <= int(self.IC_Grey_P * self.InnerCrop):
                        cutout = gray(cutout)
                    cutout = resize(cutout, out_shape=output_shape)
                    cutouts.append(cutout)
                if cutout_debug:
                    if is_colab:
                        TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save(
                            "/content/cutout_InnerCrop.jpg", quality=99
                        )
                    else:
                        TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save(
                            "cutout_InnerCrop.jpg", quality=99
                        )
            cutouts = torch.cat(cutouts)
            if skip_augs is not True:
                cutouts = self.augs(cutouts)
            return cutouts

    def spherical_dist_loss(x, y):
        x = F.normalize(x, dim=-1)
        y = F.normalize(y, dim=-1)
        return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)

    def tv_loss(input):
        """L2 total variation loss, as in Mahendran et al."""
        input = F.pad(input, (0, 1, 0, 1), "replicate")
        x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
        y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
        return (x_diff**2 + y_diff**2).mean([1, 2, 3])

    def range_loss(input):
        return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])

    stop_on_next_loop = False  # Make sure GPU memory doesn't get corrupted from cancelling the run mid-way through, allow a full frame to complete

    def nsToStr(d):
        h = 3.6e12
        m = h / 60
        s = m / 60
        return (
            str(int(d / h))
            + ":"
            + str(int((d % h) / m))
            + ":"
            + str(int((d % h) % m / s))
            + "."
            + str(int((d % h) % m % s))
        )

    def do_run():
        seed = args.seed
        # print(range(args.start_frame, args.max_frames))

        if (args.animation_mode == "3D") and (args.midas_weight > 0.0):
            (
                midas_model,
                midas_transform,
                midas_net_w,
                midas_net_h,
                midas_resize_mode,
                midas_normalization,
            ) = init_midas_depth_model(args.midas_depth_model)
        for frame_num in range(args.start_frame, args.max_frames):
            if stop_on_next_loop:
                break

            display.clear_output(wait=True)

            # Print Frame progress if animation mode is on

            """
          if args.animation_mode != "None":
            batchBar = tqdm(range(args.max_frames), desc ="Frames")
            batchBar.n = frame_num
            batchBar.refresh()
          """

            # Inits if not video frames
            if args.animation_mode != "Video Input":
                if args.init_image == "":
                    init_image = None
                else:
                    init_image = args.init_image
                init_scale = args.init_scale
                skip_steps = args.skip_steps

            if args.animation_mode == "2D":
                if args.key_frames:
                    angle = args.angle_series[frame_num]
                    zoom = args.zoom_series[frame_num]
                    translation_x = args.translation_x_series[frame_num]
                    translation_y = args.translation_y_series[frame_num]
                    print(
                        f"angle: {angle}",
                        f"zoom: {zoom}",
                        f"translation_x: {translation_x}",
                        f"translation_y: {translation_y}",
                    )

                if frame_num > 0:
                    seed = seed + 1
                    if resume_run and frame_num == start_frame:
                        img_0 = cv2.imread(
                            batchFolder
                            + f"/{batch_name}({batchNum})_{start_frame-1:04}.png"
                        )
                    else:
                        img_0 = cv2.imread("prevFrame.png")
                    center = (1 * img_0.shape[1] // 2, 1 * img_0.shape[0] // 2)
                    trans_mat = np.float32(
                        [[1, 0, translation_x], [0, 1, translation_y]]
                    )
                    rot_mat = cv2.getRotationMatrix2D(center, angle, zoom)
                    trans_mat = np.vstack([trans_mat, [0, 0, 1]])
                    rot_mat = np.vstack([rot_mat, [0, 0, 1]])
                    transformation_matrix = np.matmul(rot_mat, trans_mat)
                    img_0 = cv2.warpPerspective(
                        img_0,
                        transformation_matrix,
                        (img_0.shape[1], img_0.shape[0]),
                        borderMode=cv2.BORDER_WRAP,
                    )

                    cv2.imwrite("prevFrameScaled.png", img_0)
                    init_image = "prevFrameScaled.png"
                    init_scale = args.frames_scale
                    skip_steps = args.calc_frames_skip_steps

            if args.animation_mode == "3D":
                if args.key_frames:
                    angle = args.angle_series[frame_num]
                    # zoom = args.zoom_series[frame_num]
                    translation_x = args.translation_x_series[frame_num]
                    translation_y = args.translation_y_series[frame_num]
                    translation_z = args.translation_z_series[frame_num]
                    rotation_3d_x = args.rotation_3d_x_series[frame_num]
                    rotation_3d_y = args.rotation_3d_y_series[frame_num]
                    rotation_3d_z = args.rotation_3d_z_series[frame_num]
                    print(
                        f"angle: {angle}",
                        # f'zoom: {zoom}',
                        f"translation_x: {translation_x}",
                        f"translation_y: {translation_y}",
                        f"translation_z: {translation_z}",
                        f"rotation_3d_x: {rotation_3d_x}",
                        f"rotation_3d_y: {rotation_3d_y}",
                        f"rotation_3d_z: {rotation_3d_z}",
                    )

                sys.stdout.flush()
                # sys.stdout.write(f'FRAME_NUM = {frame_num} ...\n')
                sys.stdout.flush()

                if frame_num > 0:
                    seed = seed + 1
                    img_filepath = "prevFrame.png"
                    trans_scale = 1.0 / 200.0
                    translate_xyz = [
                        -translation_x * trans_scale,
                        translation_y * trans_scale,
                        -translation_z * trans_scale,
                    ]
                    rotate_xyz = [
                        math.radians(rotation_3d_x),
                        math.radians(rotation_3d_y),
                        math.radians(rotation_3d_z),
                    ]
                    print("translation:", translate_xyz)
                    print("rotation:", rotate_xyz)
                    rot_mat = p3dT.euler_angles_to_matrix(
                        torch.tensor(rotate_xyz, device=device), "XYZ"
                    ).unsqueeze(0)
                    print("rot_mat: " + str(rot_mat))
                    next_step_pil = dxf.transform_image_3d(
                        img_filepath,
                        midas_model,
                        midas_transform,
                        DEVICE,
                        rot_mat,
                        translate_xyz,
                        args.near_plane,
                        args.far_plane,
                        args.fov,
                        padding_mode=args.padding_mode,
                        sampling_mode=args.sampling_mode,
                        midas_weight=args.midas_weight,
                    )
                    next_step_pil.save("prevFrameScaled.png")

                    """
              ### Turbo mode - skip some diffusions to save time          
              if turbo_mode == True and frame_num > 10 and frame_num % int(turbo_steps) != 0:
                #turbo_steps
                print('turbo mode is on this frame: skipping clip diffusion steps')
                #this is an even frame. copy warped prior frame w/ war 
                #filename = f'{args.batch_name}({args.batchNum})_{frame_num:04}.png'
                #next_step_pil.save(f'{batchFolder}/{filename}') #save it as this frame
                #next_step_pil.save(f'{img_filepath}') # save it also as prev_frame for next iteration
                filename = f'progress.png'
                next_step_pil.save(f'{filename}') #save it as this frame
                next_step_pil.save(f'{img_filepath}') # save it also as prev_frame for next iteration
                continue
              elif turbo_mode == True:
                print('turbo mode is OFF this frame')
              #else: no turbo
              """

                    init_image = "prevFrameScaled.png"
                    init_scale = args.frames_scale
                    skip_steps = args.calc_frames_skip_steps

            if args.animation_mode == "Video Input":
                seed = seed + 1
                init_image = f"{videoFramesFolder}/{frame_num+1:04}.jpg"
                init_scale = args.frames_scale
                skip_steps = args.calc_frames_skip_steps

            loss_values = []

            if seed is not None:
                np.random.seed(seed)
                random.seed(seed)
                torch.manual_seed(seed)
                torch.cuda.manual_seed_all(seed)
                torch.backends.cudnn.deterministic = True

            target_embeds, weights = [], []

            if args.prompts_series is not None and frame_num >= len(
                args.prompts_series
            ):
                frame_prompt = args.prompts_series[-1]
            elif args.prompts_series is not None:
                frame_prompt = args.prompts_series[frame_num]
            else:
                frame_prompt = []

            print(args.image_prompts_series)
            if args.image_prompts_series is not None and frame_num >= len(
                args.image_prompts_series
            ):
                image_prompt = args.image_prompts_series[-1]
            elif args.image_prompts_series is not None:
                image_prompt = args.image_prompts_series[frame_num]
            else:
                image_prompt = []

            print(f"Frame Prompt: {frame_prompt}")

            model_stats = []
            for clip_model in clip_models:
                cutn = args2.cutn
                model_stat = {
                    "clip_model": None,
                    "target_embeds": [],
                    "make_cutouts": None,
                    "weights": [],
                }
                model_stat["clip_model"] = clip_model

                for prompt in frame_prompt:
                    txt, weight = parse_prompt(prompt)
                    txt = clip_model.encode_text(
                        clip.tokenize(prompt).to(device)
                    ).float()

                    if args.fuzzy_prompt:
                        for i in range(25):
                            model_stat["target_embeds"].append(
                                (
                                    txt + torch.randn(txt.shape).cuda() * args.rand_mag
                                ).clamp(0, 1)
                            )
                            model_stat["weights"].append(weight)
                    else:
                        model_stat["target_embeds"].append(txt)
                        model_stat["weights"].append(weight)

                if image_prompt:
                    model_stat["make_cutouts"] = MakeCutouts(
                        clip_model.visual.input_resolution, cutn, skip_augs=skip_augs
                    )
                    for prompt in image_prompt:
                        path, weight = parse_prompt(prompt)
                        img = Image.open(fetch(path)).convert("RGB")
                        img = TF.resize(
                            img,
                            min(side_x, side_y, *img.size),
                            T.InterpolationMode.LANCZOS,
                        )
                        batch = model_stat["make_cutouts"](
                            TF.to_tensor(img).to(device).unsqueeze(0).mul(2).sub(1)
                        )
                        embed = clip_model.encode_image(normalize(batch)).float()
                        if fuzzy_prompt:
                            for i in range(25):
                                model_stat["target_embeds"].append(
                                    (
                                        embed
                                        + torch.randn(embed.shape).cuda() * rand_mag
                                    ).clamp(0, 1)
                                )
                                weights.extend([weight / cutn] * cutn)
                        else:
                            model_stat["target_embeds"].append(embed)
                            model_stat["weights"].extend([weight / cutn] * cutn)

                model_stat["target_embeds"] = torch.cat(model_stat["target_embeds"])
                model_stat["weights"] = torch.tensor(
                    model_stat["weights"], device=device
                )
                if model_stat["weights"].sum().abs() < 1e-3:
                    raise RuntimeError("The weights must not sum to 0.")
                model_stat["weights"] /= model_stat["weights"].sum().abs()
                model_stats.append(model_stat)

            init = None
            if init_image is not None:
                init = Image.open(fetch(init_image)).convert("RGB")
                init = init.resize((args.side_x, args.side_y), Image.LANCZOS)
                init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)

            if args.perlin_init:
                if args.perlin_mode == "color":
                    init = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(12)], 1, 1, False
                    )
                    init2 = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(8)], 4, 4, False
                    )
                elif args.perlin_mode == "gray":
                    init = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(12)], 1, 1, True
                    )
                    init2 = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(8)], 4, 4, True
                    )
                else:
                    init = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(12)], 1, 1, False
                    )
                    init2 = create_perlin_noise(
                        [1.5**-i * 0.5 for i in range(8)], 4, 4, True
                    )
                # init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device)
                init = (
                    TF.to_tensor(init)
                    .add(TF.to_tensor(init2))
                    .div(2)
                    .to(device)
                    .unsqueeze(0)
                    .mul(2)
                    .sub(1)
                )
                del init2

            cur_t = None

            def cond_fn(x, t, y=None):
                with torch.enable_grad():
                    x_is_NaN = False
                    x = x.detach().requires_grad_()
                    n = x.shape[0]
                    if use_secondary_model is True:
                        alpha = torch.tensor(
                            diffusion.sqrt_alphas_cumprod[cur_t],
                            device=device,
                            dtype=torch.float32,
                        )
                        sigma = torch.tensor(
                            diffusion.sqrt_one_minus_alphas_cumprod[cur_t],
                            device=device,
                            dtype=torch.float32,
                        )
                        cosine_t = alpha_sigma_to_t(alpha, sigma)
                        out = secondary_model(x, cosine_t[None].repeat([n])).pred
                        fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
                        x_in = out * fac + x * (1 - fac)
                        x_in_grad = torch.zeros_like(x_in)
                    else:
                        my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
                        out = diffusion.p_mean_variance(
                            model, x, my_t, clip_denoised=False, model_kwargs={"y": y}
                        )
                        fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
                        x_in = out["pred_xstart"] * fac + x * (1 - fac)
                        x_in_grad = torch.zeros_like(x_in)
                    for model_stat in model_stats:
                        for i in range(int(args.cutn_batches)):
                            t_int = (
                                int(t.item()) + 1
                            )  # errors on last step without +1, need to find source
                            # when using SLIP Base model the dimensions need to be hard coded to avoid AttributeError: 'VisionTransformer' object has no attribute 'input_resolution'
                            try:
                                input_resolution = model_stat[
                                    "clip_model"
                                ].visual.input_resolution
                            except:
                                input_resolution = 224

                            cuts = MakeCutoutsDango(
                                input_resolution,
                                Overview=args.cut_overview[1000 - t_int],
                                InnerCrop=args.cut_innercut[1000 - t_int],
                                IC_Size_Pow=args.cut_ic_pow,
                                IC_Grey_P=args.cut_icgray_p[1000 - t_int],
                            )
                            clip_in = normalize(cuts(x_in.add(1).div(2)))
                            image_embeds = (
                                model_stat["clip_model"].encode_image(clip_in).float()
                            )
                            dists = spherical_dist_loss(
                                image_embeds.unsqueeze(1),
                                model_stat["target_embeds"].unsqueeze(0),
                            )
                            dists = dists.view(
                                [
                                    args.cut_overview[1000 - t_int]
                                    + args.cut_innercut[1000 - t_int],
                                    n,
                                    -1,
                                ]
                            )
                            losses = dists.mul(model_stat["weights"]).sum(2).mean(0)
                            loss_values.append(
                                losses.sum().item()
                            )  # log loss, probably shouldn't do per cutn_batch
                            x_in_grad += (
                                torch.autograd.grad(
                                    losses.sum() * clip_guidance_scale, x_in
                                )[0]
                                / cutn_batches
                            )
                    tv_losses = tv_loss(x_in)
                    if use_secondary_model is True:
                        range_losses = range_loss(out)
                    else:
                        range_losses = range_loss(out["pred_xstart"])
                    sat_losses = torch.abs(x_in - x_in.clamp(min=-1, max=1)).mean()
                    loss = (
                        tv_losses.sum() * tv_scale
                        + range_losses.sum() * range_scale
                        + sat_losses.sum() * sat_scale
                    )
                    if init is not None and args.init_scale:
                        init_losses = lpips_model(x_in, init)
                        loss = loss + init_losses.sum() * args.init_scale
                    x_in_grad += torch.autograd.grad(loss, x_in)[0]
                    if torch.isnan(x_in_grad).any() == False:
                        grad = -torch.autograd.grad(x_in, x, x_in_grad)[0]
                    else:
                        # print("NaN'd")
                        x_is_NaN = True
                        grad = torch.zeros_like(x)
                if args.clamp_grad and x_is_NaN == False:
                    magnitude = grad.square().mean().sqrt()
                    return (
                        grad * magnitude.clamp(max=args.clamp_max) / magnitude
                    )  # min=-0.02, min=-clamp_max,
                return grad

            if args.sampling_mode == "ddim":
                sample_fn = diffusion.ddim_sample_loop_progressive
            elif args.sampling_mode == "bicubic":
                sample_fn = diffusion.p_sample_loop_progressive
            elif args.sampling_mode == "plms":
                sample_fn = diffusion.plms_sample_loop_progressive
            # if model_config["timestep_respacing"].startswith("ddim"):
            #    sample_fn = diffusion.ddim_sample_loop_progressive
            # else:
            #    sample_fn = diffusion.p_sample_loop_progressive

            image_display = Output()
            for i in range(args.n_batches):
                """
                if args.animation_mode == 'None':
                  display.clear_output(wait=True)
                  batchBar = tqdm(range(args.n_batches), desc ="Batches")
                  batchBar.n = i
                  batchBar.refresh()
                print('')
                display.display(image_display)
                gc.collect()
                torch.cuda.empty_cache()
                """
                cur_t = diffusion.num_timesteps - skip_steps - 1
                total_steps = cur_t

                if perlin_init:
                    init = regen_perlin()

                if args.sampling_mode == "ddim":
                    samples = sample_fn(
                        model,
                        (batch_size, 3, args.side_y, args.side_x),
                        clip_denoised=clip_denoised,
                        model_kwargs={},
                        cond_fn=cond_fn,
                        progress=True,
                        skip_timesteps=skip_steps,
                        init_image=init,
                        randomize_class=randomize_class,
                        eta=eta,
                    )
                elif args.sampling_mode == "plms":
                    samples = sample_fn(
                        model,
                        (batch_size, 3, args.side_y, args.side_x),
                        clip_denoised=clip_denoised,
                        model_kwargs={},
                        cond_fn=cond_fn,
                        progress=True,
                        skip_timesteps=skip_steps,
                        init_image=init,
                        randomize_class=randomize_class,
                        order=2,
                    )
                elif args.sampling_mode == "bicubic":
                    samples = sample_fn(
                        model,
                        (batch_size, 3, args.side_y, args.side_x),
                        clip_denoised=clip_denoised,
                        model_kwargs={},
                        cond_fn=cond_fn,
                        progress=True,
                        skip_timesteps=skip_steps,
                        init_image=init,
                        randomize_class=randomize_class,
                    )

                # with run_display:
                # display.clear_output(wait=True)
                itt = 1
                imgToSharpen = None
                status.write("Starting the execution...")
                gc.collect()
                torch.cuda.empty_cache()
                # from tqdm.auto import tqdm
                # from stqdm_local import stqdm

                # total_iterables = stqdm(
                #    samples, total=total_steps + 1, st_container=stoutput
                # )
                total_iterables = samples
                try:
                    j = 0
                    before_start_time = time.perf_counter()
                    bar_container = status.container()
                    iteration_counter = bar_container.empty()
                    progress_bar = bar_container.progress(0)
                    for sample in total_iterables:
                        if itt == 1:
                            iteration_counter.empty()
                            imageLocation = stoutput.empty()
                        sys.stdout.write(f"Iteration {itt}\n")
                        sys.stdout.flush()
                        cur_t -= 1
                        intermediateStep = False
                        if args.steps_per_checkpoint is not None:
                            if j % steps_per_checkpoint == 0 and j > 0:
                                intermediateStep = True
                        elif j in args.intermediate_saves:
                            intermediateStep = True
                        with image_display:
                            """
                            if j % args.display_rate == 0 or cur_t == -1 or intermediateStep == True:
                                for k, image in enumerate(sample['pred_xstart']):
                                    # tqdm.write(f'Batch {i}, step {j}, output {k}:')
                                    current_time = datetime.now().strftime('%y%m%d-%H%M%S_%f')
                                    percent = math.ceil(j/total_steps*100)
                                    if args.n_batches > 0:
                                      #if intermediates are saved to the subfolder, don't append a step or percentage to the name
                                      if cur_t == -1 and args.intermediates_in_subfolder is True:
                                        save_num = f'{frame_num:04}' if animation_mode != "None" else i
                                        filename = f'{args.batch_name}({args.batchNum})_{save_num}.png'
                                      else:
                                        #If we're working with percentages, append it
                                        if args.steps_per_checkpoint is not None:
                                          filename = f'{args.batch_name}({args.batchNum})_{i:04}-{percent:02}%.png'
                                        # Or else, iIf we're working with specific steps, append those
                                        else:
                                          filename = f'{args.batch_name}({args.batchNum})_{i:04}-{j:03}.png'
                                    image = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
                                    if j % args.display_rate == 0 or cur_t == -1:
                                      image.save('progress.png')
                                      #display.clear_output(wait=True)
                                      #display.display(display.Image('progress.png'))
                                    if args.steps_per_checkpoint is not None:
                                      if j % args.steps_per_checkpoint == 0 and j > 0:
                                        if args.intermediates_in_subfolder is True:
                                          image.save(f'{partialFolder}/{filename}')
                                        else:
                                          image.save(f'{batchFolder}/{filename}')
                                    else:
                                      if j in args.intermediate_saves:
                                        if args.intermediates_in_subfolder is True:
                                          image.save(f'{partialFolder}/{filename}')
                                        else:
                                          image.save(f'{batchFolder}/{filename}')
                                    if cur_t == -1:
                                      if frame_num == 0:
                                        save_settings()
                                      if args.animation_mode != "None":
                                        image.save('prevFrame.png')
                                      if args.sharpen_preset != "Off" and animation_mode == "None":
                                        imgToSharpen = image
                                        if args.keep_unsharp is True:
                                          image.save(f'{unsharpenFolder}/{filename}')
                                      else:
                                        image.save(f'{batchFolder}/{filename}')
                                      # if frame_num != args.max_frames-1:
                                      #   display.clear_output()
                            """
                            if itt % args2.update == 0 or cur_t == -1 or itt == 1:
                                for k, image in enumerate(sample["pred_xstart"]):
                                    sys.stdout.flush()
                                    sys.stdout.write("Saving progress ...\n")
                                    sys.stdout.flush()

                                    image = TF.to_pil_image(
                                        image.add(1).div(2).clamp(0, 1)
                                    )

                                    if args.animation_mode != "None":
                                        image.save("prevFrame.png")

                                    image.save(args2.image_file)
                                    if (args2.frame_dir is not None) and (
                                        args.animation_mode == "None"
                                    ):
                                        import os

                                        file_list = []
                                        for file in sorted(os.listdir(args2.frame_dir)):
                                            if file.startswith("FRA"):
                                                if file.endswith("PNG"):
                                                    if len(file) == 12:
                                                        file_list.append(file)
                                        if file_list:
                                            last_name = file_list[-1]
                                            count_value = int(last_name[3:8]) + 1
                                            count_string = f"{count_value:05d}"
                                        else:
                                            count_string = "00001"
                                        save_name = (
                                            args2.frame_dir
                                            + "/FRA"
                                            + count_string
                                            + ".PNG"
                                        )
                                        image.save(save_name)

                                    # sys.stdout.flush()
                                    # sys.stdout.write(f'{itt}/{args2.iterations} {skip_steps} {args.animation_mode} {args2.frame_dir}\n')
                                    # sys.stdout.flush()
                                    if (
                                        (args2.frame_dir is not None)
                                        and (args.animation_mode == "3D")
                                        and (itt == args2.iterations - skip_steps)
                                    ):
                                        sys.stdout.flush()
                                        sys.stdout.write("Saving 3D frame...\n")
                                        sys.stdout.flush()
                                        import os

                                        file_list = []
                                        for file in os.listdir(args2.frame_dir):
                                            if file.startswith("FRA"):
                                                if file.endswith("PNG"):
                                                    if len(file) == 12:
                                                        file_list.append(file)
                                        if file_list:
                                            last_name = file_list[-1]
                                            count_value = int(last_name[3:8]) + 1
                                            count_string = f"{count_value:05d}"
                                        else:
                                            count_string = "00001"
                                        save_name = (
                                            args2.frame_dir
                                            + "/FRA"
                                            + count_string
                                            + ".PNG"
                                        )
                                        image.save(save_name)

                                    imageLocation.image(Image.open(args2.image_file))
                                    sys.stdout.flush()
                                    sys.stdout.write("Progress saved\n")
                                    sys.stdout.flush()
                            itt += 1
                        j += 1
                        time_past_seconds = time.perf_counter() - before_start_time
                        iterations_per_second = j / time_past_seconds
                        time_left = (total_steps - j) / iterations_per_second
                        percentage = round((j / (total_steps + 1)) * 100)

                        iteration_counter.write(
                            f"{percentage}% {j}/{total_steps+1} [{time.strftime('%M:%S', time.gmtime(time_past_seconds))}<{time.strftime('%M:%S', time.gmtime(time_left))}, {round(iterations_per_second,2)} it/s]"
                        )
                        progress_bar.progress(int(percentage))

                    # if path_exists(drive_path):

                except KeyboardInterrupt:
                    pass
                # except st.script_runner.StopException as e:
                #    imageLocation.image(args2.image_file)
                #    gc.collect()
                #    torch.cuda.empty_cache()
                #    status.write("Done!")
                #    pass
                imageLocation.empty()
                with image_display:
                    if args.sharpen_preset != "Off" and animation_mode == "None":
                        print("Starting Diffusion Sharpening...")
                        do_superres(imgToSharpen, f"{batchFolder}/{filename}")
                        display.clear_output()

                import shutil
                from pathvalidate import sanitize_filename
                import os

                if not path_exists(DefaultPaths.output_path):
                    os.makedirs(DefaultPaths.output_path)
                save_filename = f"{DefaultPaths.output_path}/{sanitize_filename(args2.prompt)} [Disco Diffusion v5] {args2.seed}.png"
                print(save_filename)
                file_list = []
                if path_exists(save_filename):
                    for file in sorted(os.listdir(f"{DefaultPaths.output_path}/")):
                        if file.startswith(
                            f"{sanitize_filename(args2.prompt)} [Disco Diffusion v5] {args2.seed}"
                        ):
                            print(file)
                            file_list.append(file)
                    print(file_list)
                    last_name = file_list[-1]
                    print(last_name)
                    if last_name[-15:-10] == "batch":
                        count_value = int(last_name[-10:-4]) + 1
                        count_string = f"{count_value:05d}"
                        save_filename = f"{DefaultPaths.output_path}/{sanitize_filename(args2.prompt)} [Disco Diffusion v5] {args2.seed}_batch {count_string}.png"
                    else:
                        save_filename = f"{DefaultPaths.output_path}/{sanitize_filename(args2.prompt)} [Disco Diffusion v5] {args2.seed}_batch 00001.png"
                shutil.copyfile(
                    args2.image_file,
                    save_filename,
                )
                imageLocation.empty()
                status.write("Done!")
                plt.plot(np.array(loss_values), "r")

    def save_settings():
        setting_list = {
            "text_prompts": text_prompts,
            "image_prompts": image_prompts,
            "clip_guidance_scale": clip_guidance_scale,
            "tv_scale": tv_scale,
            "range_scale": range_scale,
            "sat_scale": sat_scale,
            # 'cutn': cutn,
            "cutn_batches": cutn_batches,
            "max_frames": max_frames,
            "interp_spline": interp_spline,
            # 'rotation_per_frame': rotation_per_frame,
            "init_image": init_image,
            "init_scale": init_scale,
            "skip_steps": skip_steps,
            # 'zoom_per_frame': zoom_per_frame,
            "frames_scale": frames_scale,
            "frames_skip_steps": frames_skip_steps,
            "perlin_init": perlin_init,
            "perlin_mode": perlin_mode,
            "skip_augs": skip_augs,
            "randomize_class": randomize_class,
            "clip_denoised": clip_denoised,
            "clamp_grad": clamp_grad,
            "clamp_max": clamp_max,
            "seed": seed,
            "fuzzy_prompt": fuzzy_prompt,
            "rand_mag": rand_mag,
            "eta": eta,
            "width": width_height[0],
            "height": width_height[1],
            "diffusion_model": diffusion_model,
            "use_secondary_model": use_secondary_model,
            "steps": steps,
            "diffusion_steps": diffusion_steps,
            "ViTB32": ViTB32,
            "ViTB16": ViTB16,
            "ViTL14": ViTL14,
            "RN101": RN101,
            "RN50": RN50,
            "RN50x4": RN50x4,
            "RN50x16": RN50x16,
            "RN50x64": RN50x64,
            "cut_overview": str(cut_overview),
            "cut_innercut": str(cut_innercut),
            "cut_ic_pow": cut_ic_pow,
            "cut_icgray_p": str(cut_icgray_p),
            "key_frames": key_frames,
            "max_frames": max_frames,
            "angle": angle,
            "zoom": zoom,
            "translation_x": translation_x,
            "translation_y": translation_y,
            "translation_z": translation_z,
            "rotation_3d_x": rotation_3d_x,
            "rotation_3d_y": rotation_3d_y,
            "rotation_3d_z": rotation_3d_z,
            "midas_depth_model": midas_depth_model,
            "midas_weight": midas_weight,
            "near_plane": near_plane,
            "far_plane": far_plane,
            "fov": fov,
            "padding_mode": padding_mode,
            "sampling_mode": sampling_mode,
            "video_init_path": video_init_path,
            "extract_nth_frame": extract_nth_frame,
            "turbo_mode": turbo_mode,
            "turbo_steps": turbo_steps,
        }
        # print('Settings:', setting_list)
        with open(
            f"{batchFolder}/{batch_name}({batchNum})_settings.txt", "w+"
        ) as f:  # save settings
            json.dump(setting_list, f, ensure_ascii=False, indent=4)

    # @title 1.6 Define the secondary diffusion model

    def append_dims(x, n):
        return x[(Ellipsis, *(None,) * (n - x.ndim))]

    def expand_to_planes(x, shape):
        return append_dims(x, len(shape)).repeat([1, 1, *shape[2:]])

    def alpha_sigma_to_t(alpha, sigma):
        return torch.atan2(sigma, alpha) * 2 / math.pi

    def t_to_alpha_sigma(t):
        return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)

    @dataclass
    class DiffusionOutput:
        v: torch.Tensor
        pred: torch.Tensor
        eps: torch.Tensor

    class ConvBlock(nn.Sequential):
        def __init__(self, c_in, c_out):
            super().__init__(
                nn.Conv2d(c_in, c_out, 3, padding=1),
                nn.ReLU(inplace=True),
            )

    class SkipBlock(nn.Module):
        def __init__(self, main, skip=None):
            super().__init__()
            self.main = nn.Sequential(*main)
            self.skip = skip if skip else nn.Identity()

        def forward(self, input):
            return torch.cat([self.main(input), self.skip(input)], dim=1)

    class FourierFeatures(nn.Module):
        def __init__(self, in_features, out_features, std=1.0):
            super().__init__()
            assert out_features % 2 == 0
            self.weight = nn.Parameter(
                torch.randn([out_features // 2, in_features]) * std
            )

        def forward(self, input):
            f = 2 * math.pi * input @ self.weight.T
            return torch.cat([f.cos(), f.sin()], dim=-1)

    class SecondaryDiffusionImageNet(nn.Module):
        def __init__(self):
            super().__init__()
            c = 64  # The base channel count

            self.timestep_embed = FourierFeatures(1, 16)

            self.net = nn.Sequential(
                ConvBlock(3 + 16, c),
                ConvBlock(c, c),
                SkipBlock(
                    [
                        nn.AvgPool2d(2),
                        ConvBlock(c, c * 2),
                        ConvBlock(c * 2, c * 2),
                        SkipBlock(
                            [
                                nn.AvgPool2d(2),
                                ConvBlock(c * 2, c * 4),
                                ConvBlock(c * 4, c * 4),
                                SkipBlock(
                                    [
                                        nn.AvgPool2d(2),
                                        ConvBlock(c * 4, c * 8),
                                        ConvBlock(c * 8, c * 4),
                                        nn.Upsample(
                                            scale_factor=2,
                                            mode="bilinear",
                                            align_corners=False,
                                        ),
                                    ]
                                ),
                                ConvBlock(c * 8, c * 4),
                                ConvBlock(c * 4, c * 2),
                                nn.Upsample(
                                    scale_factor=2, mode="bilinear", align_corners=False
                                ),
                            ]
                        ),
                        ConvBlock(c * 4, c * 2),
                        ConvBlock(c * 2, c),
                        nn.Upsample(
                            scale_factor=2, mode="bilinear", align_corners=False
                        ),
                    ]
                ),
                ConvBlock(c * 2, c),
                nn.Conv2d(c, 3, 3, padding=1),
            )

        def forward(self, input, t):
            timestep_embed = expand_to_planes(
                self.timestep_embed(t[:, None]), input.shape
            )
            v = self.net(torch.cat([input, timestep_embed], dim=1))
            alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
            pred = input * alphas - v * sigmas
            eps = input * sigmas + v * alphas
            return DiffusionOutput(v, pred, eps)

    class SecondaryDiffusionImageNet2(nn.Module):
        def __init__(self):
            super().__init__()
            c = 64  # The base channel count
            cs = [c, c * 2, c * 2, c * 4, c * 4, c * 8]

            self.timestep_embed = FourierFeatures(1, 16)
            self.down = nn.AvgPool2d(2)
            self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)

            self.net = nn.Sequential(
                ConvBlock(3 + 16, cs[0]),
                ConvBlock(cs[0], cs[0]),
                SkipBlock(
                    [
                        self.down,
                        ConvBlock(cs[0], cs[1]),
                        ConvBlock(cs[1], cs[1]),
                        SkipBlock(
                            [
                                self.down,
                                ConvBlock(cs[1], cs[2]),
                                ConvBlock(cs[2], cs[2]),
                                SkipBlock(
                                    [
                                        self.down,
                                        ConvBlock(cs[2], cs[3]),
                                        ConvBlock(cs[3], cs[3]),
                                        SkipBlock(
                                            [
                                                self.down,
                                                ConvBlock(cs[3], cs[4]),
                                                ConvBlock(cs[4], cs[4]),
                                                SkipBlock(
                                                    [
                                                        self.down,
                                                        ConvBlock(cs[4], cs[5]),
                                                        ConvBlock(cs[5], cs[5]),
                                                        ConvBlock(cs[5], cs[5]),
                                                        ConvBlock(cs[5], cs[4]),
                                                        self.up,
                                                    ]
                                                ),
                                                ConvBlock(cs[4] * 2, cs[4]),
                                                ConvBlock(cs[4], cs[3]),
                                                self.up,
                                            ]
                                        ),
                                        ConvBlock(cs[3] * 2, cs[3]),
                                        ConvBlock(cs[3], cs[2]),
                                        self.up,
                                    ]
                                ),
                                ConvBlock(cs[2] * 2, cs[2]),
                                ConvBlock(cs[2], cs[1]),
                                self.up,
                            ]
                        ),
                        ConvBlock(cs[1] * 2, cs[1]),
                        ConvBlock(cs[1], cs[0]),
                        self.up,
                    ]
                ),
                ConvBlock(cs[0] * 2, cs[0]),
                nn.Conv2d(cs[0], 3, 3, padding=1),
            )

        def forward(self, input, t):
            timestep_embed = expand_to_planes(
                self.timestep_embed(t[:, None]), input.shape
            )
            v = self.net(torch.cat([input, timestep_embed], dim=1))
            alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
            pred = input * alphas - v * sigmas
            eps = input * sigmas + v * alphas
            return DiffusionOutput(v, pred, eps)

    # 2. Diffusion and CLIP model settings"""

    if args2.use256 == 0:
        sys.stdout.write("Loading 512x512_diffusion_uncond_finetune_008100 ...\n")
        sys.stdout.flush()
        status.write("Loading 512x512_diffusion_uncond_finetune_008100 ...\n")
        diffusion_model = "512x512_diffusion_uncond_finetune_008100"  # @param ["256x256_diffusion_uncond", "512x512_diffusion_uncond_finetune_008100"]
    else:
        sys.stdout.write("Loading 256x256_diffusion_uncond ...\n")
        sys.stdout.flush()
        status.write("Loading 256x256_diffusion_uncond ...\n")
        diffusion_model = "256x256_diffusion_uncond"

    if args2.secondarymodel == 1:
        use_secondary_model = True  # @param {type: 'boolean'}
    else:
        use_secondary_model = False  # @param {type: 'boolean'}

    # timestep_respacing = '50' # param ['25','50','100','150','250','500','1000','ddim25','ddim50', 'ddim75', 'ddim100','ddim150','ddim250','ddim500','ddim1000']
    if args2.sampling_mode == "ddim" or args2.sampling_mode == "plms":
        timestep_respacing = "ddim" + str(
            args2.iterations
        )  #'ddim100' # Modify this value to decrease the number of timesteps.
    else:
        timestep_respacing = str(
            args2.iterations
        )  #'ddim100' # Modify this value to decrease the number of timesteps.

    diffusion_steps = 1000  # param {type: 'number'}

    use_checkpoint = True  # @param {type: 'boolean'}

    # @markdown If you're having issues with model downloads, check this to compare SHA's:
    check_model_SHA = False  # @param{type:"boolean"}

    model_256_SHA = "983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a"
    model_512_SHA = "9c111ab89e214862b76e1fa6a1b3f1d329b1a88281885943d2cdbe357ad57648"
    model_secondary_SHA = (
        "983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a"
    )

    model_256_link = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt"
    model_512_link = "https://v-diffusion.s3.us-west-2.amazonaws.com/512x512_diffusion_uncond_finetune_008100.pt"
    model_secondary_link = (
        "https://v-diffusion.s3.us-west-2.amazonaws.com/secondary_model_imagenet_2.pth"
    )

    model_256_path = f"{DefaultPaths.model_path}/256x256_diffusion_uncond.pt"
    model_512_path = (
        f"{DefaultPaths.model_path}/512x512_diffusion_uncond_finetune_008100.pt"
    )
    model_secondary_path = f"{DefaultPaths.model_path}/secondary_model_imagenet_2.pth"

    model_256_downloaded = True
    model_512_downloaded = True
    model_secondary_downloaded = True

    model_config = model_and_diffusion_defaults()
    if diffusion_model == "512x512_diffusion_uncond_finetune_008100":
        model_config.update(
            {
                "attention_resolutions": "32, 16, 8",
                "class_cond": False,
                "diffusion_steps": diffusion_steps,
                "rescale_timesteps": True,
                "timestep_respacing": timestep_respacing,
                "image_size": 512,
                "learn_sigma": True,
                "noise_schedule": "linear",
                "num_channels": 256,
                "num_head_channels": 64,
                "num_res_blocks": 2,
                "resblock_updown": True,
                "use_checkpoint": use_checkpoint,
                "use_fp16": True,
                "use_scale_shift_norm": True,
            }
        )
    elif diffusion_model == "256x256_diffusion_uncond":
        model_config.update(
            {
                "attention_resolutions": "32, 16, 8",
                "class_cond": False,
                "diffusion_steps": diffusion_steps,
                "rescale_timesteps": True,
                "timestep_respacing": timestep_respacing,
                "image_size": 256,
                "learn_sigma": True,
                "noise_schedule": "linear",
                "num_channels": 256,
                "num_head_channels": 64,
                "num_res_blocks": 2,
                "resblock_updown": True,
                "use_checkpoint": use_checkpoint,
                "use_fp16": True,
                "use_scale_shift_norm": True,
            }
        )

    secondary_model_ver = 2
    model_default = model_config["image_size"]

    if secondary_model_ver == 2:
        secondary_model = SecondaryDiffusionImageNet2()
        secondary_model.load_state_dict(
            torch.load(
                f"{DefaultPaths.model_path}/secondary_model_imagenet_2.pth",
                map_location="cpu",
            )
        )
    secondary_model.eval().requires_grad_(False).to(device)

    clip_models = []
    if args2.usevit32 == 1:
        sys.stdout.write("Loading ViT-B/32 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading ViT-B/32 CLIP model ...\n")
        clip_models.append(
            clip.load("ViT-B/32", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usevit16 == 1:
        sys.stdout.write("Loading ViT-B/16 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading ViT-B/16 CLIP model ...\n")
        clip_models.append(
            clip.load("ViT-B/16", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usevit14 == 1:
        sys.stdout.write("Loading ViT-L/14 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading ViT-L/14 CLIP model ...\n")
        clip_models.append(
            clip.load("ViT-L/14", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usern50x4 == 1:
        sys.stdout.write("Loading RN50x4 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading RN50x4 CLIP model ...\n")
        clip_models.append(
            clip.load("RN50x4", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usern50x16 == 1:
        sys.stdout.write("Loading RN50x16 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading RN50x16 CLIP model ...\n")
        clip_models.append(
            clip.load("RN50x16", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usern50x64 == 1:
        sys.stdout.write("Loading RN50x64 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading RN50x64 CLIP model ...\n")
        clip_models.append(
            clip.load("RN50x64", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usern50 == 1:
        sys.stdout.write("Loading RN50 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading RN50 CLIP model ...\n")
        clip_models.append(
            clip.load("RN50", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.usern101 == 1:
        sys.stdout.write("Loading RN101 CLIP model ...\n")
        sys.stdout.flush()
        status.write("Loading RN101 CLIP model ...\n")
        clip_models.append(
            clip.load("RN101", jit=False)[0].eval().requires_grad_(False).to(device)
        )
    if args2.useslipbase == 1:
        sys.stdout.write("Loading SLIP Base model ...\n")
        sys.stdout.flush()
        SLIPB16model = SLIP_VITB16(ssl_mlp_dim=4096, ssl_emb_dim=256)
        # next 2 lines needed so torch.load handles posix paths on Windows
        import pathlib

        pathlib.PosixPath = pathlib.WindowsPath
        sd = torch.load("slip_base_100ep.pt")
        real_sd = {}
        for k, v in sd["state_dict"].items():
            real_sd[".".join(k.split(".")[1:])] = v
        del sd
        SLIPB16model.load_state_dict(real_sd)
        SLIPB16model.requires_grad_(False).eval().to(device)
        clip_models.append(SLIPB16model)
    if args2.usesliplarge == 1:
        sys.stdout.write("Loading SLIP Large model ...\n")
        sys.stdout.flush()
        SLIPL16model = SLIP_VITL16(ssl_mlp_dim=4096, ssl_emb_dim=256)
        # next 2 lines needed so torch.load handles posix paths on Windows
        import pathlib

        pathlib.PosixPath = pathlib.WindowsPath
        sd = torch.load("slip_large_100ep.pt")
        real_sd = {}
        for k, v in sd["state_dict"].items():
            real_sd[".".join(k.split(".")[1:])] = v
        del sd
        SLIPL16model.load_state_dict(real_sd)
        SLIPL16model.requires_grad_(False).eval().to(device)
        clip_models.append(SLIPL16model)

    normalize = T.Normalize(
        mean=[0.48145466, 0.4578275, 0.40821073],
        std=[0.26862954, 0.26130258, 0.27577711],
    )
    status.write("Loading lpips model...\n")
    lpips_model = lpips.LPIPS(net="vgg").to(device)

    """# 3. Settings"""

    # sys.stdout.write("DEBUG0 ...\n")
    # sys.stdout.flush()

    # @markdown ####**Basic Settings:**
    batch_name = "TimeToDisco"  # @param{type: 'string'}
    steps = (
        args2.iterations
    )  # @param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true}
    width_height = [args2.sizex, args2.sizey]  # @param{type: 'raw'}
    clip_guidance_scale = args2.guidancescale  # @param{type: 'number'}
    tv_scale = args2.tvscale  # @param{type: 'number'}
    range_scale = args2.rangescale  # @param{type: 'number'}
    sat_scale = args2.saturationscale  # @param{type: 'number'}
    cutn_batches = args2.cutnbatches  # @param{type: 'number'}

    if args2.useaugs == 1:
        skip_augs = False  # False - Controls whether to skip torchvision augmentations
    else:
        skip_augs = True  # False - Controls whether to skip torchvision augmentations

    # @markdown ####**Init Settings:**
    if args2.seed_image is not None:
        init_image = (
            args2.seed_image
        )  # This can be an URL or Colab local path and must be in quotes.
        skip_steps = (
            args2.skipseedtimesteps
        )  # 12 Skip unstable steps                  # Higher values make the output look more like the init.
        init_scale = (
            args2.initscale
        )  # This enhances the effect of the init image, a good value is 1000.
    else:
        init_image = ""  # This can be an URL or Colab local path and must be in quotes.
        skip_steps = 0  # 12 Skip unstable steps                  # Higher values make the output look more like the init.
        init_scale = (
            0  # This enhances the effect of the init image, a good value is 1000.
        )

    if init_image == "":
        init_image = None

    side_x = args2.sizex
    side_y = args2.sizey

    # Update Model Settings
    # timestep_respacing = f'ddim{steps}'
    diffusion_steps = (1000 // steps) * steps if steps < 1000 else steps
    model_config.update(
        {
            "timestep_respacing": timestep_respacing,
            "diffusion_steps": diffusion_steps,
        }
    )

    # Make folder for batch
    batchFolder = f"./"
    # createPath(batchFolder)

    # sys.stdout.write("DEBUG1 ...\n")
    # sys.stdout.flush()

    """###Animation Settings"""

    # @markdown ####**Animation Mode:**
    animation_mode = (
        args2.animation_mode
    )  #'None' #@param ['None', '2D', '3D', 'Video Input'] {type:'string'}
    # @markdown *For animation, you probably want to turn `cutn_batches` to 1 to make it quicker.*

    # @markdown ---

    # @markdown ####**Video Input Settings:**
    video_init_path = "training.mp4"  # "D:\\sample_cat.mp4" #@param {type: 'string'}
    extract_nth_frame = 2  # @param {type:"number"}

    # sys.stdout.write("DEBUG1a ...\n")
    # sys.stdout.flush()

    if animation_mode == "Video Input":
        videoFramesFolder = "./videoFrames"
        # createPath(videoFramesFolder)
        # print(f"Exporting Video Frames (1 every {extract_nth_frame})...")
        sys.stdout.write(f"Exporting Video Frames (1 every {extract_nth_frame})...\n")
        sys.stdout.flush()

        """
      try:
        !rm {videoFramesFolder}/*.jpg
      except:
        print('')
      """
        # sys.stdout.write("DEBUG1a1 ...\n")
        # sys.stdout.flush()
        vf = f'"select=not(mod(n\,{extract_nth_frame}))"'
        # sys.stdout.write("DEBUG1a2 ...\n")
        # sys.stdout.flush()
        os.system(
            f"ffmpeg.exe -i {video_init_path} -vf {vf} -vsync vfr -q:v 2 -loglevel error -stats {videoFramesFolder}/%04d.jpg"
        )
        # sys.stdout.write("DEBUG1a3 ...\n")
        # sys.stdout.flush()

    # sys.stdout.write("DEBUG1b ...\n")
    # sys.stdout.flush()

    # @markdown ---

    # @markdown ####**2D Animation Settings:**
    # @markdown `zoom` is a multiplier of dimensions, 1 is no zoom.

    key_frames = True  # @param {type:"boolean"}
    max_frames = args2.max_frames  # 10000#@param {type:"number"}

    # sys.stdout.write("DEBUG1c ...\n")
    # sys.stdout.flush()

    if animation_mode == "Video Input":
        max_frames = len(glob(f"{videoFramesFolder}/*.jpg"))

    # sys.stdout.write("DEBUG1d ...\n")
    # sys.stdout.flush()

    interp_spline = "Linear"  # Do not change, currently will not look good. param ['Linear','Quadratic','Cubic']{type:"string"}
    angle = args2.angle  # "0:(0)"#@param {type:"string"}
    zoom = args2.zoom  # "0: (1), 10: (1.05)"#@param {type:"string"}
    translation_x = args2.translation_x  # "0: (0)"#@param {type:"string"}
    translation_y = args2.translation_y  # "0: (0)"#@param {type:"string"}
    translation_z = args2.translation_z  # "0: (10.0)"#@param {type:"string"}
    rotation_3d_x = args2.rotation_3d_x  # "0: (0)"#@param {type:"string"}
    rotation_3d_y = args2.rotation_3d_y  # "0: (0)"#@param {type:"string"}
    rotation_3d_z = args2.rotation_3d_z  # "0: (0)"#@param {type:"string"}
    midas_depth_model = "dpt_large"  # @param {type:"string"}
    midas_weight = args2.midas_weight  # 0.3#@param {type:"number"}
    near_plane = args2.near_plane  # 200#@param {type:"number"}
    far_plane = args2.far_plane  # 10000#@param {type:"number"}
    fov = args2.fov  # 40#@param {type:"number"}
    padding_mode = "border"  # @param {type:"string"}
    sampling_mode = args2.sampling_mode  # @param {type:"string"}
    # @markdown ####**Coherency Settings:**
    # @markdown `frame_scale` tries to guide the new frame to looking like the old one. A good default is 1500.
    frames_scale = args2.frames_scale  # 1500 #@param{type: 'integer'}
    # @markdown `frame_skip_steps` will blur the previous frame - higher values will flicker less but struggle to add enough new detail to zoom into.
    frames_skip_steps = (
        args2.frames_skip_steps
    )  #'60%' #@param ['40%', '50%', '60%', '70%', '80%'] {type: 'string'}

    if args2.turbo_mode == 1:
        turbo_mode = True  # @param {type:"boolean"}
    else:
        turbo_mode = False  # @param {type:"boolean"}
    turbo_steps = args2.turbo_steps  # "3" #@param ["2","3","4"] {type:'string'}
    # @markdown ---

    def parse_key_frames(string, prompt_parser=None):
        """Given a string representing frame numbers paired with parameter values at that frame,
        return a dictionary with the frame numbers as keys and the parameter values as the values.

        Parameters
        ----------
        string: string
            Frame numbers paired with parameter values at that frame number, in the format
            'framenumber1: (parametervalues1), framenumber2: (parametervalues2), ...'
        prompt_parser: function or None, optional
            If provided, prompt_parser will be applied to each string of parameter values.

        Returns
        -------
        dict
            Frame numbers as keys, parameter values at that frame number as values

        Raises
        ------
        RuntimeError
            If the input string does not match the expected format.

        Examples
        --------
        >>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)")
        {10: 'Apple: 1| Orange: 0', 20: 'Apple: 0| Orange: 1| Peach: 1'}

        >>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)", prompt_parser=lambda x: x.lower()))
        {10: 'apple: 1| orange: 0', 20: 'apple: 0| orange: 1| peach: 1'}
        """
        import re

        pattern = r"((?P<frame>[0-9]+):[\s]*[\(](?P<param>[\S\s]*?)[\)])"
        frames = dict()
        for match_object in re.finditer(pattern, string):
            frame = int(match_object.groupdict()["frame"])
            param = match_object.groupdict()["param"]
            if prompt_parser:
                frames[frame] = prompt_parser(param)
            else:
                frames[frame] = param

        if frames == {} and len(string) != 0:
            raise RuntimeError("Key Frame string not correctly formatted")
        return frames

    def get_inbetweens(key_frames, integer=False):
        """Given a dict with frame numbers as keys and a parameter value as values,
        return a pandas Series containing the value of the parameter at every frame from 0 to max_frames.
        Any values not provided in the input dict are calculated by linear interpolation between
        the values of the previous and next provided frames. If there is no previous provided frame, then
        the value is equal to the value of the next provided frame, or if there is no next provided frame,
        then the value is equal to the value of the previous provided frame. If no frames are provided,
        all frame values are NaN.

        Parameters
        ----------
        key_frames: dict
            A dict with integer frame numbers as keys and numerical values of a particular parameter as values.
        integer: Bool, optional
            If True, the values of the output series are converted to integers.
            Otherwise, the values are floats.

        Returns
        -------
        pd.Series
            A Series with length max_frames representing the parameter values for each frame.

        Examples
        --------
        >>> max_frames = 5
        >>> get_inbetweens({1: 5, 3: 6})
        0    5.0
        1    5.0
        2    5.5
        3    6.0
        4    6.0
        dtype: float64

        >>> get_inbetweens({1: 5, 3: 6}, integer=True)
        0    5
        1    5
        2    5
        3    6
        4    6
        dtype: int64
        """
        key_frame_series = pd.Series([np.nan for a in range(max_frames)])

        for i, value in key_frames.items():
            key_frame_series[i] = value
        key_frame_series = key_frame_series.astype(float)

        interp_method = interp_spline

        if interp_method == "Cubic" and len(key_frames.items()) <= 3:
            interp_method = "Quadratic"

        if interp_method == "Quadratic" and len(key_frames.items()) <= 2:
            interp_method = "Linear"

        key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()]
        key_frame_series[max_frames - 1] = key_frame_series[
            key_frame_series.last_valid_index()
        ]
        # key_frame_series = key_frame_series.interpolate(method=intrp_method,order=1, limit_direction='both')
        key_frame_series = key_frame_series.interpolate(
            method=interp_method.lower(), limit_direction="both"
        )
        if integer:
            return key_frame_series.astype(int)
        return key_frame_series

    def split_prompts(prompts):
        prompt_series = pd.Series([np.nan for a in range(max_frames)])
        for i, prompt in prompts.items():
            prompt_series[i] = prompt
        # prompt_series = prompt_series.astype(str)
        prompt_series = prompt_series.ffill().bfill()
        return prompt_series

    if key_frames:
        try:
            angle_series = get_inbetweens(parse_key_frames(angle))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `angle` correctly for key frames.\n"
                "Attempting to interpret `angle` as "
                f'"0: ({angle})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            angle = f"0: ({angle})"
            angle_series = get_inbetweens(parse_key_frames(angle))

        try:
            zoom_series = get_inbetweens(parse_key_frames(zoom))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `zoom` correctly for key frames.\n"
                "Attempting to interpret `zoom` as "
                f'"0: ({zoom})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            zoom = f"0: ({zoom})"
            zoom_series = get_inbetweens(parse_key_frames(zoom))

        try:
            translation_x_series = get_inbetweens(parse_key_frames(translation_x))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `translation_x` correctly for key frames.\n"
                "Attempting to interpret `translation_x` as "
                f'"0: ({translation_x})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            translation_x = f"0: ({translation_x})"
            translation_x_series = get_inbetweens(parse_key_frames(translation_x))

        try:
            translation_y_series = get_inbetweens(parse_key_frames(translation_y))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `translation_y` correctly for key frames.\n"
                "Attempting to interpret `translation_y` as "
                f'"0: ({translation_y})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            translation_y = f"0: ({translation_y})"
            translation_y_series = get_inbetweens(parse_key_frames(translation_y))

        try:
            translation_z_series = get_inbetweens(parse_key_frames(translation_z))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `translation_z` correctly for key frames.\n"
                "Attempting to interpret `translation_z` as "
                f'"0: ({translation_z})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            translation_z = f"0: ({translation_z})"
            translation_z_series = get_inbetweens(parse_key_frames(translation_z))

        try:
            rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `rotation_3d_x` correctly for key frames.\n"
                "Attempting to interpret `rotation_3d_x` as "
                f'"0: ({rotation_3d_x})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            rotation_3d_x = f"0: ({rotation_3d_x})"
            rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x))

        try:
            rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `rotation_3d_y` correctly for key frames.\n"
                "Attempting to interpret `rotation_3d_y` as "
                f'"0: ({rotation_3d_y})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            rotation_3d_y = f"0: ({rotation_3d_y})"
            rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y))

        try:
            rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z))
        except RuntimeError as e:
            print(
                "WARNING: You have selected to use key frames, but you have not "
                "formatted `rotation_3d_z` correctly for key frames.\n"
                "Attempting to interpret `rotation_3d_z` as "
                f'"0: ({rotation_3d_z})"\n'
                "Please read the instructions to find out how to use key frames "
                "correctly.\n"
            )
            rotation_3d_z = f"0: ({rotation_3d_z})"
            rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z))

    else:
        angle = float(angle)
        zoom = float(zoom)
        translation_x = float(translation_x)
        translation_y = float(translation_y)
        translation_z = float(translation_z)
        rotation_3d_x = float(rotation_3d_x)
        rotation_3d_y = float(rotation_3d_y)
        rotation_3d_z = float(rotation_3d_z)

    """### Extra Settings
     Partial Saves, Diffusion Sharpening, Advanced Settings, Cutn Scheduling
    """

    # @markdown ####**Saving:**

    intermediate_saves = 0  # @param{type: 'raw'}
    intermediates_in_subfolder = True  # @param{type: 'boolean'}
    # @markdown Intermediate steps will save a copy at your specified intervals. You can either format it as a single integer or a list of specific steps

    # @markdown A value of `2` will save a copy at 33% and 66%. 0 will save none.

    # @markdown A value of `[5, 9, 34, 45]` will save at steps 5, 9, 34, and 45. (Make sure to include the brackets)

    if type(intermediate_saves) is not list:
        if intermediate_saves:
            steps_per_checkpoint = math.floor(
                (steps - skip_steps - 1) // (intermediate_saves + 1)
            )
            steps_per_checkpoint = (
                steps_per_checkpoint if steps_per_checkpoint > 0 else 1
            )
            print(f"Will save every {steps_per_checkpoint} steps")
        else:
            steps_per_checkpoint = steps + 10
    else:
        steps_per_checkpoint = None

    if intermediate_saves and intermediates_in_subfolder is True:
        partialFolder = f"{batchFolder}/partials"
        createPath(partialFolder)

        # @markdown ---

    # @markdown ####**SuperRes Sharpening:**
    # @markdown *Sharpen each image using latent-diffusion. Does not run in animation mode. `keep_unsharp` will save both versions.*
    sharpen_preset = "Off"  # @param ['Off', 'Faster', 'Fast', 'Slow', 'Very Slow']
    keep_unsharp = True  # @param{type: 'boolean'}

    if sharpen_preset != "Off" and keep_unsharp is True:
        unsharpenFolder = f"{batchFolder}/unsharpened"
        createPath(unsharpenFolder)

        # @markdown ---

    # @markdown ####**Advanced Settings:**
    # @markdown *There are a few extra advanced settings available if you double click this cell.*

    # @markdown *Perlin init will replace your init, so uncheck if using one.*

    if args2.perlin_init == 1:
        perlin_init = True  # @param{type: 'boolean'}
    else:
        perlin_init = False  # @param{type: 'boolean'}
    perlin_mode = args2.perlin_mode  #'mixed' #@param ['mixed', 'color', 'gray']

    set_seed = "random_seed"  # @param{type: 'string'}
    eta = args2.eta  # @param{type: 'number'}
    clamp_grad = True  # @param{type: 'boolean'}
    clamp_max = args2.clampmax  # @param{type: 'number'}

    ### EXTRA ADVANCED SETTINGS:
    randomize_class = True
    if args2.denoised == 1:
        clip_denoised = True
    else:
        clip_denoised = False
    fuzzy_prompt = False
    rand_mag = 0.05

    # @markdown ---

    # @markdown ####**Cutn Scheduling:**
    # @markdown Format: `[40]*400+[20]*600` = 40 cuts for the first 400 /1000 steps, then 20 for the last 600/1000

    # @markdown cut_overview and cut_innercut are cumulative for total cutn on any given step. Overview cuts see the entire image and are good for early structure, innercuts are your standard cutn.

    cut_overview = "[12]*400+[4]*600"  # @param {type: 'string'}
    cut_innercut = "[4]*400+[12]*600"  # @param {type: 'string'}
    cut_ic_pow = 1  # @param {type: 'number'}
    cut_icgray_p = "[0.2]*400+[0]*600"  # @param {type: 'string'}

    """###Prompts
    `animation_mode: None` will only use the first set. `animation_mode: 2D / Video` will run through them per the set frames and hold on the last one.
    """

    """
    text_prompts = {
        0: ["A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.", "yellow color scheme"],
        100: ["This set of prompts start at frame 100","This prompt has weight five:5"],
    }
    """

    text_prompts = {0: [phrase.strip() for phrase in args2.prompt.split("|")]}

    image_prompts = {
        # 0:['ImagePromptsWorkButArentVeryGood.png:2',],
    }

    """# 4. Diffuse!"""

    # @title Do the Run!
    # @markdown `n_batches` ignored with animation modes.
    display_rate = args2.update  # @param{type: 'number'}
    n_batches = 1  # @param{type: 'number'}

    batch_size = 1

    def move_files(start_num, end_num, old_folder, new_folder):
        for i in range(start_num, end_num):
            old_file = old_folder + f"/{batch_name}({batchNum})_{i:04}.png"
            new_file = new_folder + f"/{batch_name}({batchNum})_{i:04}.png"
            os.rename(old_file, new_file)

    # @markdown ---

    resume_run = False  # @param{type: 'boolean'}
    run_to_resume = "latest"  # @param{type: 'string'}
    resume_from_frame = "latest"  # @param{type: 'string'}
    retain_overwritten_frames = False  # @param{type: 'boolean'}
    if retain_overwritten_frames is True:
        retainFolder = f"{batchFolder}/retained"
        createPath(retainFolder)

    skip_step_ratio = int(frames_skip_steps.rstrip("%")) / 100
    calc_frames_skip_steps = math.floor(steps * skip_step_ratio)

    if steps <= calc_frames_skip_steps:
        sys.exit("ERROR: You can't skip more steps than your total steps")

    """
    if resume_run:
      if run_to_resume == 'latest':
        try:
          batchNum
        except:
          batchNum = len(glob(f"{batchFolder}/{batch_name}(*)_settings.txt"))-1
      else:
        batchNum = int(run_to_resume)
      if resume_from_frame == 'latest':
        start_frame = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png"))
      else:
        start_frame = int(resume_from_frame)+1
        if retain_overwritten_frames is True:
          existing_frames = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png"))
          frames_to_save = existing_frames - start_frame
          print(f'Moving {frames_to_save} frames to the Retained folder')
          move_files(start_frame, existing_frames, batchFolder, retainFolder)
    else:
    """
    start_frame = 0
    batchNum = 1
    """
    batchNum = len(glob(batchFolder+"/*.txt"))
    while path.isfile(f"{batchFolder}/{batch_name}({batchNum})_settings.txt") is True or path.isfile(f"{batchFolder}/{batch_name}-{batchNum}_settings.txt") is True:
      batchNum += 1
    """
    # print(f'Starting Run: {batch_name}({batchNum}) at frame {start_frame}')

    if set_seed == "random_seed":
        random.seed()
        seed = random.randint(0, 2**32)
        # print(f'Using seed: {seed}')
    else:
        seed = int(set_seed)

    args = {
        "batchNum": batchNum,
        "prompts_series": split_prompts(text_prompts) if text_prompts else None,
        "image_prompts_series": split_prompts(image_prompts) if image_prompts else None,
        "seed": seed,
        "display_rate": display_rate,
        "n_batches": n_batches if animation_mode == "None" else 1,
        "batch_size": batch_size,
        "batch_name": batch_name,
        "steps": steps,
        "width_height": width_height,
        "clip_guidance_scale": clip_guidance_scale,
        "tv_scale": tv_scale,
        "range_scale": range_scale,
        "sat_scale": sat_scale,
        "cutn_batches": cutn_batches,
        "init_image": init_image,
        "init_scale": init_scale,
        "skip_steps": skip_steps,
        "sharpen_preset": sharpen_preset,
        "keep_unsharp": keep_unsharp,
        "side_x": side_x,
        "side_y": side_y,
        "timestep_respacing": timestep_respacing,
        "diffusion_steps": diffusion_steps,
        "animation_mode": animation_mode,
        "video_init_path": video_init_path,
        "extract_nth_frame": extract_nth_frame,
        "key_frames": key_frames,
        "max_frames": max_frames if animation_mode != "None" else 1,
        "interp_spline": interp_spline,
        "start_frame": start_frame,
        "angle": angle,
        "zoom": zoom,
        "translation_x": translation_x,
        "translation_y": translation_y,
        "translation_z": translation_z,
        "rotation_3d_x": rotation_3d_x,
        "rotation_3d_y": rotation_3d_y,
        "rotation_3d_z": rotation_3d_z,
        "midas_depth_model": midas_depth_model,
        "midas_weight": midas_weight,
        "near_plane": near_plane,
        "far_plane": far_plane,
        "fov": fov,
        "padding_mode": padding_mode,
        "sampling_mode": sampling_mode,
        "angle_series": angle_series,
        "zoom_series": zoom_series,
        "translation_x_series": translation_x_series,
        "translation_y_series": translation_y_series,
        "translation_z_series": translation_z_series,
        "rotation_3d_x_series": rotation_3d_x_series,
        "rotation_3d_y_series": rotation_3d_y_series,
        "rotation_3d_z_series": rotation_3d_z_series,
        "frames_scale": frames_scale,
        "calc_frames_skip_steps": calc_frames_skip_steps,
        "skip_step_ratio": skip_step_ratio,
        "calc_frames_skip_steps": calc_frames_skip_steps,
        "text_prompts": text_prompts,
        "image_prompts": image_prompts,
        "cut_overview": eval(cut_overview),
        "cut_innercut": eval(cut_innercut),
        "cut_ic_pow": cut_ic_pow,
        "cut_icgray_p": eval(cut_icgray_p),
        "intermediate_saves": intermediate_saves,
        "intermediates_in_subfolder": intermediates_in_subfolder,
        "steps_per_checkpoint": steps_per_checkpoint,
        "perlin_init": perlin_init,
        "perlin_mode": perlin_mode,
        "set_seed": set_seed,
        "eta": eta,
        "clamp_grad": clamp_grad,
        "clamp_max": clamp_max,
        "skip_augs": skip_augs,
        "randomize_class": randomize_class,
        "clip_denoised": clip_denoised,
        "fuzzy_prompt": fuzzy_prompt,
        "rand_mag": rand_mag,
    }

    args = SimpleNamespace(**args)

    print("Prepping model...")
    model, diffusion = create_model_and_diffusion(**model_config)
    model.load_state_dict(
        torch.load(
            f"{DefaultPaths.model_path}/{diffusion_model}.pt", map_location="cpu"
        )
    )
    model.requires_grad_(False).eval().to(device)
    for name, param in model.named_parameters():
        if "qkv" in name or "norm" in name or "proj" in name:
            param.requires_grad_()
    if model_config["use_fp16"]:
        model.convert_to_fp16()

    sys.stdout.write("Starting ...\n")
    sys.stdout.flush()
    status.write(f"Starting ...\n")

    gc.collect()
    torch.cuda.empty_cache()
    try:
        do_run()
    # except st.script_runner.StopException as e:
    #    print("stopped here (a bit out)")
    #    pass
    except KeyboardInterrupt:
        pass
    finally:
        gc.collect()
        torch.cuda.empty_cache()