File size: 3,823 Bytes
2eb58d1 199e379 84f6f2e 2eb58d1 84f6f2e 071944b a17b7c9 84f6f2e 199e379 2eb58d1 4e01792 2eb58d1 071944b 2eb58d1 84f6f2e 2eb58d1 a0c074d 84f6f2e 2eb58d1 84f6f2e 16489cb 84f6f2e 2eb58d1 84f6f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from turtle import width
import gradio as gr
import random
import os
import io, base64
from PIL import Image
import numpy
import shortuuid
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion")
rudalle = gr.Interface.load("spaces/multimodalart/rudalle")
#print(rudalle)
#guided = gr.Interface.load("spaces/EleutherAI/clip-guided-diffusion")
#print(guided)
def text2image_latent(text,steps,width,height,images,diversity):
results = latent(text, steps, width, height, images, diversity)
image_paths = []
image_arrays = []
for image in results[1]:
image_str = image[0]
image_str = image_str.replace("data:image/png;base64,","")
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
img = Image.open(io.BytesIO(decoded_bytes))
image_arrays.append(numpy.asarray(img))
#url = shortuuid.uuid()
#temp_dir = './tmp'
#if not os.path.exists(temp_dir):
# os.makedirs(temp_dir, exist_ok=True)
#image_path = f'{temp_dir}/{url}.png'
#img.save(f'{temp_dir}/{url}.png')
#image_paths.append(image_path)
return(results[0],image_arrays)
def text2image_rudalle(text,aspect,model):
image = rudalle(text,aspect,model)[0]
return(image)
#def text2image_guided(text):
# image = guided(text, None, 10, 600, 0, 0, 0, random.randint(0,2147483647), None, 50, 32)
# print(image)
# image = image[0]
# return(image)
css_mt = {"margin-top": "1em"}
empty = gr.outputs.HTML()
with gr.Blocks() as mindseye:
gr.Markdown("# MindsEye Lite")
gr.Markdown("### Run multiple text-to-image models in one place")
gr.Markdown("<style>.mx-auto.container .gr-form-gap {flex-direction: row; gap: calc(1rem * calc(1 - var(--tw-space-y-reverse)));} .mx-auto.container .gr-form-gap .flex-col, .mx-auto.container .gr-form-gap .gr-box{width: 100%}</style>")
text = gr.inputs.Textbox(placeholder="Try writing something..", label="Prompt")
with gr.Column():
with gr.Row():
with gr.Tabs():
with gr.TabItem("Latent Diffusion"):
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1)
width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32)
height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32)
images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4)
diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0)
get_image_latent = gr.Button("Generate Image",css=css_mt)
with gr.TabItem("ruDALLE"):
aspect = gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Square")
model = gr.inputs.Dropdown(label="Model", choices=["Surrealism","Realism", "Emoji"], default="Surrealism")
get_image_rudalle = gr.Button("Generate Image",css=css_mt)
with gr.Row():
with gr.Tabs():
with gr.TabItem("Image output"):
image = gr.outputs.Image()
with gr.TabItem("Gallery output"):
gallery = gr.outputs.Carousel(label="Individual images",components=["image"])
get_image_latent.click(text2image_latent, inputs=[text,steps,width,height,images,diversity], outputs=[image,gallery])
get_image_rudalle.click(text2image_rudalle, inputs=[text,aspect,model], outputs=image)
mindseye.launch(enable_queue=True)
|