Spaces:
Runtime error
Runtime error
File size: 4,177 Bytes
c8c7b71 850b0e4 c8c7b71 850b0e4 ee2e0b7 c8c7b71 ee2e0b7 850b0e4 c8c7b71 850b0e4 ee2e0b7 c8c7b71 ee2e0b7 c8c7b71 1ec2ec6 c8c7b71 ee2e0b7 c8c7b71 1ec2ec6 c8c7b71 1ec2ec6 850b0e4 1ec2ec6 850b0e4 c8c7b71 850b0e4 c8c7b71 ee2e0b7 c8c7b71 850b0e4 2c782ec c8c7b71 ee2e0b7 c8c7b71 ee2e0b7 c8c7b71 7c51e0d 226c5b4 850b0e4 c8c7b71 d59d1e6 1ec2ec6 c8c7b71 141b1fb d59d1e6 ee2e0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import torch
import uuid
from mario_gpt.dataset import MarioDataset
from mario_gpt.prompter import Prompter
from mario_gpt.lm import MarioLM
from mario_gpt.utils import view_level, convert_level_to_png
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import os
import uvicorn
mario_lm = MarioLM()
device = torch.device('cuda')
mario_lm = mario_lm.to(device)
TILE_DIR = "data/tiles"
app = FastAPI()
def make_html_file(generated_level):
level_text = f"""{'''
'''.join(view_level(generated_level,mario_lm.tokenizer))}"""
unique_id = uuid.uuid1()
with open(f"static/demo-{unique_id}.html", 'w', encoding='utf-8') as f:
f.write(f'''<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Mario Game</title>
<script src="https://cjrtnc.leaningtech.com/20230216/loader.js"></script>
</head>
<body>
</body>
<script>
cheerpjInit().then(function () {{
cheerpjAddStringFile("/str/mylevel.txt", `{level_text}`);
}});
cheerpjCreateDisplay(512, 500);
cheerpjRunJar("/app/static/mario.jar");
</script>
</html>''')
return f"demo-{unique_id}.html"
def generate(pipes, enemies, blocks, elevation, temperature = 2.0, level_size = 1399, prompt = ""):
if prompt == "":
prompt = f"{pipes} pipes, {enemies} enemies, {blocks} blocks, {elevation} elevation"
print(f"Using prompt: {prompt}")
prompts = [prompt]
generated_level = mario_lm.sample(
prompts=prompts,
num_steps=level_size,
temperature=temperature,
use_tqdm=True
)
filename = make_html_file(generated_level)
img = convert_level_to_png(generated_level.squeeze(), TILE_DIR, mario_lm.tokenizer)[0]
gradio_html = f'''<div>
<iframe width=512 height=512 style="margin: 0 auto" src="static/{filename}"></iframe>
<p style="text-align:center">Press the arrow keys to move. Press <code>a</code> to run, <code>s</code> to jump and <code>d</code> to shoot fireflowers</p>
</div>'''
return [img, gradio_html]
with gr.Blocks().queue() as demo:
gr.Markdown('''### Playable demo for MarioGPT: Open-Ended Text2Level Generation through Large Language Models
[[Github](https://github.com/shyamsn97/mario-gpt)], [[Paper](https://arxiv.org/abs/2302.05981)]
''')
with gr.Tabs():
with gr.TabItem("Compose prompt"):
with gr.Row():
pipes = gr.Radio(["no", "little", "some", "many"], label="How many pipes?")
enemies = gr.Radio(["no", "little", "some", "many"], label="How many enemies?")
with gr.Row():
blocks = gr.Radio(["little", "some", "many"], label="How many blocks?")
elevation = gr.Radio(["low", "high"], label="Elevation?")
with gr.TabItem("Type prompt"):
text_prompt = gr.Textbox(value="", label="Enter your MarioGPT prompt. ex: 'many pipes, many enemies, some blocks, low elevation'")
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Number(value=2.0, label="temperature: Increase these for more diverse, but lower quality, generations")
level_size = gr.Slider(value=1399, precision=0, minimum=100, maximum=2799, step=1, label="level_size")
btn = gr.Button("Generate level")
with gr.Row():
with gr.Box():
level_play = gr.HTML()
level_image = gr.Image()
btn.click(fn=generate, inputs=[pipes, enemies, blocks, elevation, temperature, level_size, text_prompt], outputs=[level_image, level_play])
gr.Examples(
examples=[
["many", "many", "some", "high"],
["no", "some", "many", "high", 2.0],
["many", "many", "little", "low", 2.0],
["no", "no", "many", "high", 2.4],
],
inputs=[pipes, enemies, blocks, elevation],
outputs=[level_image, level_play],
fn=generate,
cache_examples=True,
)
app.mount("/static", StaticFiles(directory="static", html=True), name="static")
app = gr.mount_gradio_app(app, demo, "/", gradio_api_url="http://localhost:7860/")
uvicorn.run(app, host="0.0.0.0", port=7860) |