Spaces:
Running
on
L40S
Running
on
L40S
File size: 16,414 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes
# for ComfyUI https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#
# based on https://github.com/LEv145/images-grid-comfy-plugin
import os
import folder_paths
from PIL import Image, ImageFont
import torch
import numpy as np
import re
from pathlib import Path
import typing as t
from dataclasses import dataclass
from .functions_xygrid import create_images_grid_by_columns, Annotation
from ..categories import icons
def tensor_to_pillow(image: t.Any) -> Image.Image:
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pillow_to_tensor(image: Image.Image) -> t.Any:
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def find_highest_numeric_value(directory, filename_prefix):
highest_value = -1 # Initialize with a value lower than possible numeric values
# Iterate through all files in the directory
for filename in os.listdir(directory):
if filename.startswith(filename_prefix):
try:
# Extract numeric part of the filename
numeric_part = filename[len(filename_prefix):]
numeric_str = re.search(r'\d+', numeric_part).group()
numeric_value = int(numeric_str)
# Check if the current numeric value is higher than the highest found so far
if numeric_value > highest_value:
highest_value = int(numeric_value)
except ValueError:
# If the numeric part is not a valid integer, ignore the file
continue
return highest_value
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYList:
@classmethod
def INPUT_TYPES(s):
return {"required":{
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"list1": ("STRING", {"multiline": True, "default": "x"}), #"forceInput": True}),
"x_prepend": ("STRING", {"multiline": False, "default": ""}),
"x_append": ("STRING", {"multiline": False, "default": ""}),
"x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),
"list2": ("STRING", {"multiline": True, "default": "y"}),
"y_prepend": ("STRING", {"multiline": False, "default": ""}),
"y_append": ("STRING", {"multiline": False, "default": ""}),
"y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),
}
}
RETURN_TYPES = ("STRING", "STRING", "STRING", "STRING", "BOOLEAN", "STRING", )
RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", )
FUNCTION = "cross_join"
CATEGORY = icons.get("Comfyroll/XY Grid")
def cross_join(self, list1, list2, x_prepend, x_append, x_annotation_prepend,
y_prepend, y_append, y_annotation_prepend, index):
# Index values for all XY nodes start from 1
index -=1
trigger = False
#listx = list1.split(",")
#listy = list2.split(",")
listx = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list1)
listy = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list2)
listx = [item.strip() for item in listx]
listy = [item.strip() for item in listy]
lenx = len(listx)
leny = len(listy)
grid_size = lenx * leny
x = index % lenx
y = int(index / lenx)
x_out = x_prepend + listx[x] + x_append
y_out = y_prepend + listy[y] + y_append
x_ann_out = ""
y_ann_out = ""
if index + 1 == grid_size:
x_ann_out = [x_annotation_prepend + item + ";" for item in listx]
y_ann_out = [y_annotation_prepend + item + ";" for item in listy]
x_ann_out = "".join([str(item) for item in x_ann_out])
y_ann_out = "".join([str(item) for item in y_ann_out])
trigger = True
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-list"
return (x_out, y_out, x_ann_out, y_ann_out, trigger, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYInterpolate:
@classmethod
def INPUT_TYPES(s):
gradient_profiles = ["Lerp"]
return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"x_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
"x_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
"x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),
"y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"y_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
"y_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
"y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"gradient_profile": (gradient_profiles,)
}
}
RETURN_TYPES = ("FLOAT", "FLOAT", "STRING", "STRING", "BOOLEAN", "STRING", )
RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", )
FUNCTION = "gradient"
CATEGORY = icons.get("Comfyroll/XY Grid")
def gradient(self, x_columns, x_start_value, x_step, x_annotation_prepend,
y_rows, y_start_value, y_step, y_annotation_prepend,
index, gradient_profile):
# Index values for all XY nodes start from 1
index -=1
trigger = False
grid_size = x_columns * y_rows
x = index % x_columns
y = int(index / x_columns)
x_float_out = round(x_start_value + x * x_step, 3)
y_float_out = round(y_start_value + y * y_step, 3)
x_ann_out = ""
y_ann_out = ""
if index + 1 == grid_size:
for i in range(0, x_columns):
x = index % x_columns
x_float_out = x_start_value + i * x_step
x_float_out = round(x_float_out, 3)
x_ann_out = x_ann_out + x_annotation_prepend + str(x_float_out) + "; "
for j in range(0, y_rows):
y = int(index / x_columns)
y_float_out = y_start_value + j * y_step
y_float_out = round(y_float_out, 3)
y_ann_out = y_ann_out + y_annotation_prepend + str(y_float_out) + "; "
x_ann_out = x_ann_out[:-1]
y_ann_out = y_ann_out[:-1]
print(x_ann_out,y_ann_out)
trigger = True
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-interpolate"
return (x_float_out, y_float_out, x_ann_out, y_ann_out, trigger, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYIndex:
@classmethod
def INPUT_TYPES(s):
gradient_profiles = ["Lerp"]
return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
}
}
RETURN_TYPES = ("INT", "INT", "STRING", )
RETURN_NAMES = ("x", "y", "show_help", )
FUNCTION = "index"
CATEGORY = icons.get("Comfyroll/XY Grid")
def index(self, x_columns, y_rows, index):
# Index values for all XY nodes start from 1
index -=1
x = index % x_columns
y = int(index / x_columns)
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-index"
return (x, y, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYFromFolder:
@classmethod
def INPUT_TYPES(cls) -> dict[str, t.Any]:
input_dir = folder_paths.output_directory
image_folder = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name))]
return {"required":
{"image_folder": (sorted(image_folder), ),
"start_index": ("INT", {"default": 1, "min": 0, "max": 10000}),
"end_index": ("INT", {"default": 1, "min": 1, "max": 10000}),
"max_columns": ("INT", {"default": 1, "min": 1, "max": 10000}),
"x_annotation": ("STRING", {"multiline": True}),
"y_annotation": ("STRING", {"multiline": True}),
"font_size": ("INT", {"default": 50, "min": 1}),
"gap": ("INT", {"default": 0, "min": 0}),
},
"optional": {
"trigger": ("BOOLEAN", {"default": False},),
}
}
RETURN_TYPES = ("IMAGE", "BOOLEAN", "STRING", )
RETURN_NAMES = ("IMAGE", "trigger", "show_help", )
FUNCTION = "load_images"
CATEGORY = icons.get("Comfyroll/XY Grid")
def load_images(self, image_folder, start_index, end_index, max_columns, x_annotation, y_annotation, font_size, gap, trigger=False):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-from-folder"
if trigger == False:
return((), False, show_help, )
input_dir = folder_paths.output_directory
image_path = os.path.join(input_dir, image_folder)
file_list = sorted(os.listdir(image_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()))
sample_frames = []
pillow_images = []
if len(file_list) < end_index:
end_index = len(file_list)
for num in range(start_index, end_index + 1):
i = Image.open(os.path.join(image_path, file_list[num - 1]))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
image = image.squeeze()
sample_frames.append(image)
resolved_font_path = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "fonts\Roboto-Regular.ttf")
font = ImageFont.truetype(str(resolved_font_path), size=font_size)
start_x_ann = (start_index % max_columns) - 1
start_y_ann = int(start_index / max_columns)
column_list = x_annotation.split(";")[start_x_ann:]
row_list = y_annotation.split(";")[start_y_ann:]
column_list = [item.strip() for item in column_list]
row_list = [item.strip() for item in row_list]
annotation = Annotation(column_texts=column_list, row_texts=row_list, font=font)
images = torch.stack(sample_frames)
pillow_images = [tensor_to_pillow(i) for i in images]
pillow_grid = create_images_grid_by_columns(
images=pillow_images,
gap=gap,
annotation=annotation,
max_columns=max_columns,
)
tensor_grid = pillow_to_tensor(pillow_grid)
return (tensor_grid, trigger, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYSaveGridImage:
# originally based on SaveImageSequence by mtb
def __init__(self):
self.type = "output"
@classmethod
def INPUT_TYPES(cls):
output_dir = folder_paths.output_directory
output_folders = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir,name))]
return {
"required": {"mode": (["Save", "Preview"],),
"output_folder": (sorted(output_folders), ),
"image": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "CR"}),
"file_format": (["webp", "jpg", "png", "tif"],),
},
"optional": {"output_path": ("STRING", {"default": '', "multiline": False}),
"trigger": ("BOOLEAN", {"default": False},),
}
}
RETURN_TYPES = ()
FUNCTION = "save_image"
OUTPUT_NODE = True
CATEGORY = icons.get("Comfyroll/XY Grid")
def save_image(self, mode, output_folder, image, file_format, output_path='', filename_prefix="CR", trigger=False):
if trigger == False:
return ()
output_dir = folder_paths.get_output_directory()
out_folder = os.path.join(output_dir, output_folder)
# Set the output path
if output_path != '':
if not os.path.exists(output_path):
print(f"[Warning] CR Save XY Grid Image: The input_path `{output_path}` does not exist")
return ("",)
out_path = output_path
else:
out_path = os.path.join(output_dir, out_folder)
if mode == "Preview":
out_path = folder_paths.temp_directory
print(f"[Info] CR Save XY Grid Image: Output path is `{out_path}`")
# Set the counter
counter = find_highest_numeric_value(out_path, filename_prefix) + 1
#print(f"[Debug] counter {counter}")
# Output image
output_image = image[0].cpu().numpy()
img = Image.fromarray(np.clip(output_image * 255.0, 0, 255).astype(np.uint8))
output_filename = f"{filename_prefix}_{counter:05}"
img_params = {'png': {'compress_level': 4},
'webp': {'method': 6, 'lossless': False, 'quality': 80},
'jpg': {'format': 'JPEG'},
'tif': {'format': 'TIFF'}
}
self.type = "output" if mode == "Save" else 'temp'
resolved_image_path = os.path.join(out_path, f"{output_filename}.{file_format}")
img.save(resolved_image_path, **img_params[file_format])
print(f"[Info] CR Save XY Grid Image: Saved to {output_filename}.{file_format}")
out_filename = f"{output_filename}.{file_format}"
preview = {"ui": {"images": [{"filename": out_filename,"subfolder": out_path,"type": self.type,}]}}
return preview
#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
# 0 nodes released
'''
NODE_CLASS_MAPPINGS = {
# XY Grid
"CR XY List":CR_XYList,
"CR XY Index":CR_XYIndex,
"CR XY Interpolate":CR_XYInterpolate,
"CR XY From Folder":CR_XYFromFolder,
"CR XY Save Grid Image":CR_XYSaveGridImage,
}
'''
|