File size: 16,414 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi    https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes                             
# for ComfyUI                                                 https://github.com/comfyanonymous/ComfyUI                                               
#---------------------------------------------------------------------------------------------------------------------#
# based on https://github.com/LEv145/images-grid-comfy-plugin

import os
import folder_paths
from PIL import Image, ImageFont
import torch
import numpy as np
import re
from pathlib import Path
import typing as t
from dataclasses import dataclass
from .functions_xygrid import create_images_grid_by_columns, Annotation
from ..categories import icons
    
def tensor_to_pillow(image: t.Any) -> Image.Image:
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

def pillow_to_tensor(image: Image.Image) -> t.Any:
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)

def find_highest_numeric_value(directory, filename_prefix):
    highest_value = -1  # Initialize with a value lower than possible numeric values
    
    # Iterate through all files in the directory
    for filename in os.listdir(directory):
        if filename.startswith(filename_prefix):
            try:
                # Extract numeric part of the filename
                numeric_part = filename[len(filename_prefix):]
                numeric_str = re.search(r'\d+', numeric_part).group()
                numeric_value = int(numeric_str)
                # Check if the current numeric value is higher than the highest found so far
                if numeric_value > highest_value:
                    highest_value = int(numeric_value)
            except ValueError:
                # If the numeric part is not a valid integer, ignore the file
                continue
    
    return highest_value
    
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYList:

    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                    "index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                    "list1": ("STRING", {"multiline": True, "default": "x"}), #"forceInput": True}),
                    "x_prepend": ("STRING", {"multiline": False, "default": ""}),
                    "x_append": ("STRING", {"multiline": False, "default": ""}),
                    "x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),                    
                    "list2": ("STRING", {"multiline": True, "default": "y"}),
                    "y_prepend": ("STRING", {"multiline": False, "default": ""}),
                    "y_append": ("STRING", {"multiline": False, "default": ""}),                    
                    "y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}),
                    }
        }

    RETURN_TYPES = ("STRING", "STRING", "STRING", "STRING", "BOOLEAN", "STRING", )
    RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", ) 
    FUNCTION = "cross_join"
    CATEGORY = icons.get("Comfyroll/XY Grid") 
    
    def cross_join(self, list1, list2, x_prepend, x_append, x_annotation_prepend,
    y_prepend, y_append, y_annotation_prepend, index):

        # Index values for all XY nodes start from 1
        index -=1
        
        trigger = False

        #listx = list1.split(",")
        #listy = list2.split(",")
        listx = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list1)
        listy = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list2)
        
        listx = [item.strip() for item in listx]
        listy = [item.strip() for item in listy]
        
        lenx = len(listx)
        leny = len(listy)
        
        grid_size = lenx * leny

        x = index % lenx
        y = int(index / lenx)
        
        x_out = x_prepend + listx[x] + x_append
        y_out = y_prepend + listy[y] + y_append

        x_ann_out = ""
        y_ann_out = ""
        
        if index + 1 == grid_size:
            x_ann_out = [x_annotation_prepend + item + ";" for item in listx]
            y_ann_out = [y_annotation_prepend + item + ";" for item in listy]
            x_ann_out = "".join([str(item) for item in x_ann_out])
            y_ann_out = "".join([str(item) for item in y_ann_out])
            trigger = True

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-list"

        return (x_out, y_out, x_ann_out, y_ann_out, trigger, show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_XYInterpolate:

    @classmethod
    def INPUT_TYPES(s):
        gradient_profiles = ["Lerp"]    
    
        return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                             "x_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
                             "x_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
                             "x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), 
                             "y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                             "y_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
                             "y_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}),
                             "y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), 
                             "index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                             "gradient_profile": (gradient_profiles,)                              
                            }              
                }
    
    RETURN_TYPES = ("FLOAT", "FLOAT", "STRING", "STRING", "BOOLEAN", "STRING", )
    RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", )    
    FUNCTION = "gradient"
    CATEGORY = icons.get("Comfyroll/XY Grid") 

    def gradient(self, x_columns, x_start_value, x_step, x_annotation_prepend,
    y_rows, y_start_value, y_step, y_annotation_prepend, 
    index, gradient_profile):

        # Index values for all XY nodes start from 1
        index -=1
        trigger = False
        grid_size = x_columns * y_rows
        
        x = index % x_columns
        y = int(index / x_columns)    
        
        x_float_out = round(x_start_value + x * x_step, 3)
        y_float_out = round(y_start_value + y * y_step, 3)
           
        x_ann_out = ""
        y_ann_out = ""
        
        if index + 1 == grid_size:
            for i in range(0, x_columns):
                x = index % x_columns
                x_float_out = x_start_value + i * x_step
                x_float_out = round(x_float_out, 3)
                x_ann_out = x_ann_out + x_annotation_prepend + str(x_float_out) + "; "
            for j in range(0, y_rows):
                y = int(index / x_columns)
                y_float_out = y_start_value + j * y_step
                y_float_out = round(y_float_out, 3)
                y_ann_out = y_ann_out + y_annotation_prepend + str(y_float_out) + "; "
                    
            x_ann_out = x_ann_out[:-1]
            y_ann_out = y_ann_out[:-1]
            print(x_ann_out,y_ann_out)
            trigger = True
             
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-interpolate"

        return (x_float_out, y_float_out, x_ann_out, y_ann_out, trigger, show_help, )
   
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYIndex: 

    @classmethod
    def INPUT_TYPES(s):
        gradient_profiles = ["Lerp"]    
    
        return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                             "y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),
                             "index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}),                             
                }
        }

    RETURN_TYPES = ("INT", "INT", "STRING", )
    RETURN_NAMES = ("x", "y", "show_help", )    
    FUNCTION = "index"
    CATEGORY = icons.get("Comfyroll/XY Grid") 

    def index(self, x_columns, y_rows, index):

        # Index values for all XY nodes start from 1
        index -=1
        
        x = index % x_columns
        y = int(index / x_columns)  
        
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-index"

        return (x, y, show_help, )
       
#---------------------------------------------------------------------------------------------------------------------#
class CR_XYFromFolder:

    @classmethod
    def INPUT_TYPES(cls) -> dict[str, t.Any]:
    
        input_dir = folder_paths.output_directory
        image_folder = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name))] 
        
        return {"required":
                    {"image_folder": (sorted(image_folder), ),
                     "start_index": ("INT", {"default": 1, "min": 0, "max": 10000}),
                     "end_index": ("INT", {"default": 1, "min": 1, "max": 10000}),
                     "max_columns": ("INT", {"default": 1, "min": 1, "max": 10000}),
                     "x_annotation": ("STRING", {"multiline": True}),                     
                     "y_annotation": ("STRING", {"multiline": True}),  
                     "font_size": ("INT", {"default": 50, "min": 1}),
                     "gap": ("INT", {"default": 0, "min": 0}),
                     },
                "optional": {
                    "trigger": ("BOOLEAN", {"default": False},),
            }                     
                }

    RETURN_TYPES = ("IMAGE", "BOOLEAN", "STRING", )
    RETURN_NAMES = ("IMAGE", "trigger", "show_help", )
    FUNCTION = "load_images"
    CATEGORY = icons.get("Comfyroll/XY Grid") 
    
    def load_images(self, image_folder, start_index, end_index, max_columns, x_annotation, y_annotation, font_size, gap, trigger=False):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-from-folder"

        if trigger == False:
            return((), False, show_help, )
            
        input_dir = folder_paths.output_directory
        image_path = os.path.join(input_dir, image_folder)
        file_list = sorted(os.listdir(image_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()))
        
        sample_frames = []
        pillow_images = []
        
        if len(file_list) < end_index:
            end_index = len(file_list)

        for num in range(start_index, end_index + 1):
            i = Image.open(os.path.join(image_path, file_list[num - 1]))
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            image = image.squeeze()
            sample_frames.append(image)
        
        resolved_font_path = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "fonts\Roboto-Regular.ttf")
        font = ImageFont.truetype(str(resolved_font_path), size=font_size)
        
        start_x_ann = (start_index % max_columns) - 1
        start_y_ann = int(start_index / max_columns) 
        
        column_list = x_annotation.split(";")[start_x_ann:]
        row_list = y_annotation.split(";")[start_y_ann:]
        
        column_list = [item.strip() for item in column_list]
        row_list = [item.strip() for item in row_list]
         
        annotation = Annotation(column_texts=column_list, row_texts=row_list, font=font)              
        images = torch.stack(sample_frames)
        
        pillow_images = [tensor_to_pillow(i) for i in images]
        pillow_grid = create_images_grid_by_columns(
            images=pillow_images,
            gap=gap,
            annotation=annotation,
            max_columns=max_columns,
        )
        tensor_grid = pillow_to_tensor(pillow_grid)

        return (tensor_grid, trigger, show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_XYSaveGridImage:
# originally based on SaveImageSequence by mtb

    def __init__(self):
        self.type = "output"

    @classmethod
    def INPUT_TYPES(cls):
    
        output_dir = folder_paths.output_directory
        output_folders = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir,name))]
    
        return {
            "required": {"mode": (["Save", "Preview"],),
                         "output_folder": (sorted(output_folders), ),
                         "image": ("IMAGE", ),
                         "filename_prefix": ("STRING", {"default": "CR"}),
                         "file_format": (["webp", "jpg", "png", "tif"],),
            },
            "optional": {"output_path": ("STRING", {"default": '', "multiline": False}),
                         "trigger": ("BOOLEAN", {"default": False},),                         
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "save_image"
    OUTPUT_NODE = True
    CATEGORY = icons.get("Comfyroll/XY Grid") 
            
    def save_image(self, mode, output_folder, image, file_format, output_path='', filename_prefix="CR", trigger=False):

        if trigger == False:
            return ()
        
        output_dir = folder_paths.get_output_directory()  
        out_folder = os.path.join(output_dir, output_folder)

        # Set the output path
        if output_path != '':
            if not os.path.exists(output_path):
                print(f"[Warning] CR Save XY Grid Image: The input_path `{output_path}` does not exist")
                return ("",)
            out_path = output_path
        else:
            out_path = os.path.join(output_dir, out_folder)
        
        if mode == "Preview":
            out_path = folder_paths.temp_directory

        print(f"[Info] CR Save XY Grid Image: Output path is `{out_path}`")
        
        # Set the counter
        counter = find_highest_numeric_value(out_path, filename_prefix) + 1
        #print(f"[Debug] counter {counter}")
        
        # Output image
        output_image = image[0].cpu().numpy()
        img = Image.fromarray(np.clip(output_image * 255.0, 0, 255).astype(np.uint8))
        
        output_filename = f"{filename_prefix}_{counter:05}"
        img_params = {'png': {'compress_level': 4}, 
                      'webp': {'method': 6, 'lossless': False, 'quality': 80},
                      'jpg': {'format': 'JPEG'},
                      'tif': {'format': 'TIFF'}
                     } 
        self.type = "output" if mode == "Save" else 'temp'

        resolved_image_path = os.path.join(out_path, f"{output_filename}.{file_format}")
        img.save(resolved_image_path, **img_params[file_format])
        print(f"[Info] CR Save XY Grid Image: Saved to {output_filename}.{file_format}")
        out_filename = f"{output_filename}.{file_format}"
        preview = {"ui": {"images": [{"filename": out_filename,"subfolder": out_path,"type": self.type,}]}}
       
        return preview

#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
# 0 nodes released
'''
NODE_CLASS_MAPPINGS = {
    # XY Grid
    "CR XY List":CR_XYList,
    "CR XY Index":CR_XYIndex,    
    "CR XY Interpolate":CR_XYInterpolate,
    "CR XY From Folder":CR_XYFromFolder,
    "CR XY Save Grid Image":CR_XYSaveGridImage,    
}
'''