File size: 3,589 Bytes
ec3b96a
1f2f15c
 
166b6db
2509eb1
 
1f2f15c
547b516
1f2f15c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93780aa
 
 
 
 
 
ec3b96a
1f2f15c
 
77e039c
ec3b96a
 
 
 
 
 
 
 
 
 
1f2f15c
ec3b96a
 
 
 
 
 
1f2f15c
 
 
 
 
 
 
 
 
 
ec3b96a
1f2f15c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
import spaces 
import torch 

edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

EDMEulerScheduler.set_timesteps = set_timesteps_patched

pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
    edit_file, num_in_channels=8
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_normal.to("cuda")

@spaces.GPU
def run_normal(prompt):
    return pipe_normal(prompt, num_inference_steps=20).images[0]

@spaces.GPU
def run_edit(image, prompt):
    resolution = 1024
    image.resize((resolution, resolution))
    return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,num_inference_steps=20).images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
with gr.Blocks() as demo:
    gr.Markdown('''# CosXL demo
    Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
    ''')
    with gr.Tab("CosXL"):
      with gr.Group():
          with gr.Row():
            prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
            button_normal = gr.Button("Generate", min_width=120)
          output_normal = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            pass
    with gr.Tab("CosXL Edit"):
      with gr.Group():
          image_edit = gr.Image(label="Image you would like to edit", type="pil")
          with gr.Row():
            prompt_edit = gr.Textbox(show_label=False, scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
            button_edit = gr.Button("Generate", min_width=120)
          output_edit = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            pass
    button_normal.click(
        fn=run_normal,
        inputs=[prompt_normal],
        outputs=[output_normal]
    )
    button_edit.click(
        fn=run_edit,
        inputs=[image_edit, prompt_edit],
        outputs=[output_edit]
    )
if __name__ == "__main__":
    demo.launch(share=True)