Spaces:
Running
on
A100
Running
on
A100
File size: 14,787 Bytes
4a09d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
import os
from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import PIL
import torch
import torch.utils.checkpoint
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from PIL import Image
from safetensors import safe_open
from safetensors.torch import save_file
from torch.utils.data import Dataset
from transformers import AutoTokenizer, PretrainedConfig
def prepare_image(
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
) -> torch.Tensor:
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
arr = np.array(pil_image.convert("RGB"))
arr = arr.astype(np.float32) / 127.5 - 1
arr = np.transpose(arr, [2, 0, 1])
image = torch.from_numpy(arr).unsqueeze(0)
return image
def prepare_mask(
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
) -> torch.Tensor:
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
arr = np.array(pil_image.convert("L"))
arr = arr.astype(np.float32) / 255.0
arr = np.expand_dims(arr, 0)
image = torch.from_numpy(arr).unsqueeze(0)
return image
class PreprocessedDataset(Dataset):
def __init__(
self,
csv_path: str,
tokenizer_1,
tokenizer_2,
vae_encoder,
text_encoder_1=None,
text_encoder_2=None,
do_cache: bool = False,
size: int = 512,
text_dropout: float = 0.0,
scale_vae_latents: bool = True,
substitute_caption_map: Dict[str, str] = {},
):
super().__init__()
self.data = pd.read_csv(csv_path)
self.csv_path = csv_path
self.caption = self.data["caption"]
# make it lowercase
self.caption = self.caption.str.lower()
for key, value in substitute_caption_map.items():
self.caption = self.caption.str.replace(key.lower(), value)
self.image_path = self.data["image_path"]
if "mask_path" not in self.data.columns:
self.mask_path = None
else:
self.mask_path = self.data["mask_path"]
if text_encoder_1 is None:
self.return_text_embeddings = False
else:
self.text_encoder_1 = text_encoder_1
self.text_encoder_2 = text_encoder_2
self.return_text_embeddings = True
assert (
NotImplementedError
), "Preprocessing Text Encoder is not implemented yet"
self.tokenizer_1 = tokenizer_1
self.tokenizer_2 = tokenizer_2
self.vae_encoder = vae_encoder
self.scale_vae_latents = scale_vae_latents
self.text_dropout = text_dropout
self.size = size
if do_cache:
self.vae_latents = []
self.tokens_tuple = []
self.masks = []
self.do_cache = True
print("Captions to train on: ")
for idx in range(len(self.data)):
token, vae_latent, mask = self._process(idx)
self.vae_latents.append(vae_latent)
self.tokens_tuple.append(token)
self.masks.append(mask)
del self.vae_encoder
else:
self.do_cache = False
@torch.no_grad()
def _process(
self, idx: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
image_path = self.image_path[idx]
image_path = os.path.join(os.path.dirname(self.csv_path), image_path)
image = PIL.Image.open(image_path).convert("RGB")
image = prepare_image(image, self.size, self.size).to(
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
)
caption = self.caption[idx]
print(caption)
# tokenizer_1
ti1 = self.tokenizer_1(
caption,
padding="max_length",
max_length=77,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
).input_ids
ti2 = self.tokenizer_2(
caption,
padding="max_length",
max_length=77,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
).input_ids
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
if self.scale_vae_latents:
vae_latent = vae_latent * self.vae_encoder.config.scaling_factor
if self.mask_path is None:
mask = torch.ones_like(
vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
)
else:
mask_path = self.mask_path[idx]
mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path)
mask = PIL.Image.open(mask_path)
mask = prepare_mask(mask, self.size, self.size).to(
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
)
mask = torch.nn.functional.interpolate(
mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest"
)
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
assert len(mask.shape) == 4 and len(vae_latent.shape) == 4
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
def __len__(self) -> int:
return len(self.data)
def atidx(
self, idx: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
if self.do_cache:
return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]
else:
return self._process(idx)
def __getitem__(
self, idx: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
token, vae_latent, mask = self.atidx(idx)
return token, vae_latent, mask
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
tokenizer_one = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
revision=revision,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=revision,
use_fast=False,
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(
pretrained_model_name_or_path, subfolder="scheduler"
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
pretrained_model_name_or_path, revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
pretrained_model_name_or_path, revision, subfolder="text_encoder_2"
)
text_encoder_one = text_encoder_cls_one.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path, subfolder="vae", revision=revision
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet", revision=revision
)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet.to(device, dtype=weight_dtype)
vae.to(device, dtype=torch.float32)
text_encoder_one.to(device, dtype=weight_dtype)
text_encoder_two.to(device, dtype=weight_dtype)
return (
tokenizer_one,
tokenizer_two,
noise_scheduler,
text_encoder_one,
text_encoder_two,
vae,
unet,
)
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
"""
Returns:
a state dict containing just the attention processor parameters.
"""
attn_processors = unet.attn_processors
attn_processors_state_dict = {}
for attn_processor_key, attn_processor in attn_processors.items():
for parameter_key, parameter in attn_processor.state_dict().items():
attn_processors_state_dict[
f"{attn_processor_key}.{parameter_key}"
] = parameter
return attn_processors_state_dict
class TokenEmbeddingsHandler:
def __init__(self, text_encoders, tokenizers):
self.text_encoders = text_encoders
self.tokenizers = tokenizers
self.train_ids: Optional[torch.Tensor] = None
self.inserting_toks: Optional[List[str]] = None
self.embeddings_settings = {}
def initialize_new_tokens(self, inserting_toks: List[str]):
idx = 0
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
assert isinstance(
inserting_toks, list
), "inserting_toks should be a list of strings."
assert all(
isinstance(tok, str) for tok in inserting_toks
), "All elements in inserting_toks should be strings."
self.inserting_toks = inserting_toks
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
tokenizer.add_special_tokens(special_tokens_dict)
text_encoder.resize_token_embeddings(len(tokenizer))
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
# random initialization of new tokens
std_token_embedding = (
text_encoder.text_model.embeddings.token_embedding.weight.data.std()
)
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
text_encoder.text_model.embeddings.token_embedding.weight.data[
self.train_ids
] = (
torch.randn(
len(self.train_ids), text_encoder.text_model.config.hidden_size
)
.to(device=self.device)
.to(dtype=self.dtype)
* std_token_embedding
)
self.embeddings_settings[
f"original_embeddings_{idx}"
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
inu = torch.ones((len(tokenizer),), dtype=torch.bool)
inu[self.train_ids] = False
self.embeddings_settings[f"index_no_updates_{idx}"] = inu
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)
idx += 1
def save_embeddings(self, file_path: str):
assert (
self.train_ids is not None
), "Initialize new tokens before saving embeddings."
tensors = {}
for idx, text_encoder in enumerate(self.text_encoders):
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[
0
] == len(self.tokenizers[0]), "Tokenizers should be the same."
new_token_embeddings = (
text_encoder.text_model.embeddings.token_embedding.weight.data[
self.train_ids
]
)
tensors[f"text_encoders_{idx}"] = new_token_embeddings
save_file(tensors, file_path)
@property
def dtype(self):
return self.text_encoders[0].dtype
@property
def device(self):
return self.text_encoders[0].device
def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder):
# Assuming new tokens are of the format <s_i>
self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])]
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
tokenizer.add_special_tokens(special_tokens_dict)
text_encoder.resize_token_embeddings(len(tokenizer))
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
assert self.train_ids is not None, "New tokens could not be converted to IDs."
text_encoder.text_model.embeddings.token_embedding.weight.data[
self.train_ids
] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype)
@torch.no_grad()
def retract_embeddings(self):
for idx, text_encoder in enumerate(self.text_encoders):
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
text_encoder.text_model.embeddings.token_embedding.weight.data[
index_no_updates
] = (
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
.to(device=text_encoder.device)
.to(dtype=text_encoder.dtype)
)
# for the parts that were updated, we need to normalize them
# to have the same std as before
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]
index_updates = ~index_no_updates
new_embeddings = (
text_encoder.text_model.embeddings.token_embedding.weight.data[
index_updates
]
)
off_ratio = std_token_embedding / new_embeddings.std()
new_embeddings = new_embeddings * (off_ratio**0.1)
text_encoder.text_model.embeddings.token_embedding.weight.data[
index_updates
] = new_embeddings
def load_embeddings(self, file_path: str):
with safe_open(file_path, framework="pt", device=self.device.type) as f:
for idx in range(len(self.text_encoders)):
text_encoder = self.text_encoders[idx]
tokenizer = self.tokenizers[idx]
loaded_embeddings = f.get_tensor(f"text_encoders_{idx}")
self._load_embeddings(loaded_embeddings, tokenizer, text_encoder) |