File size: 13,343 Bytes
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0616d16
 
 
 
 
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7242
 
6426e9a
 
 
 
 
 
 
03a856a
 
 
 
dbd7242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
 
dbd7242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7242
 
03a856a
 
 
 
 
 
 
 
 
dbd7242
0616d16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''

import os
import random
from datetime import datetime
from pathlib import Path

import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse

import gradio as gr

import huggingface_hub

huggingface_hub.snapshot_download(
    repo_id='BadToBest/EchoMimic',
    local_dir='./pretrained_weights',
    local_dir_use_symlinks=False,
)

default_values = {
    "width": 512,
    "height": 512,
    "length": 1200,
    "seed": 420,
    "facemask_dilation_ratio": 0.1,
    "facecrop_dilation_ratio": 0.5,
    "context_frames": 12,
    "context_overlap": 3,
    "cfg": 2.5,
    "steps": 30,
    "sample_rate": 16000,
    "fps": 24,
    "device": "cuda"
}

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
    weight_dtype = torch.float16
else:
    weight_dtype = torch.float32

device = "cuda"
if not torch.cuda.is_available():
    device = "cpu"

inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)

############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)

## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
    config.pretrained_base_model_path,
    subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))

## denoising net init
if os.path.exists(config.motion_module_path):
    ### stage1 + stage2
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        config.motion_module_path,
        subfolder="unet",
        unet_additional_kwargs=infer_config.unet_additional_kwargs,
    ).to(dtype=weight_dtype, device=device)
else:
    ### only stage1
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        "",
        subfolder="unet",
        unet_additional_kwargs={
            "use_motion_module": False,
            "unet_use_temporal_attention": False,
            "cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
        }
    ).to(dtype=weight_dtype, device=device)

denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)

## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path))

## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)

## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)

############# model_init finished #############

sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)

pipe = Audio2VideoPipeline(
    vae=vae,
    reference_unet=reference_unet,
    denoising_unet=denoising_unet,
    audio_guider=audio_processor,
    face_locator=face_locator,
    scheduler=scheduler,
).to("cuda", dtype=weight_dtype)

def select_face(det_bboxes, probs):
    ## max face from faces that the prob is above 0.8
    ## box: xyxy
    if det_bboxes is None or probs is None:
        return None
    filtered_bboxes = []
    for bbox_i in range(len(det_bboxes)):
        if probs[bbox_i] > 0.8:
            filtered_bboxes.append(det_bboxes[bbox_i])
    if len(filtered_bboxes) == 0:
        return None
    sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
    return sorted_bboxes[0]

def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):

    if seed is not None and seed > -1:
        generator = torch.manual_seed(seed)
    else:
        generator = torch.manual_seed(random.randint(100, 1000000))

    #### face musk prepare
    face_img = cv2.imread(uploaded_img)
    face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
    det_bboxes, probs = face_detector.detect(face_img)
    select_bbox = select_face(det_bboxes, probs)
    if select_bbox is None:
        face_mask[:, :] = 255
    else:
        xyxy = select_bbox[:4]
        xyxy = np.round(xyxy).astype('int')
        rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
        r_pad = int((re - rb) * facemask_dilation_ratio)
        c_pad = int((ce - cb) * facemask_dilation_ratio)
        face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
        
        #### face crop
        r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
        c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
        crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
        face_img = crop_and_pad(face_img, crop_rect)
        face_mask = crop_and_pad(face_mask, crop_rect)
        face_img = cv2.resize(face_img, (width, height))
        face_mask = cv2.resize(face_mask, (width, height))

    ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
    face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
    
    video = pipe(
        ref_image_pil,
        uploaded_audio,
        face_mask_tensor,
        width,
        height,
        length,
        steps,
        cfg,
        generator=generator,
        audio_sample_rate=sample_rate,
        context_frames=context_frames,
        fps=fps,
        context_overlap=context_overlap
    ).videos

    save_dir = Path("output/tmp")
    save_dir.mkdir(exist_ok=True, parents=True)
    output_video_path = save_dir / "output_video.mp4"
    save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)

    video_clip = VideoFileClip(str(output_video_path))
    audio_clip = AudioFileClip(uploaded_audio)
    final_output_path = save_dir / "output_video_with_audio.mp4"
    video_clip = video_clip.set_audio(audio_clip)
    video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")

    return final_output_path
  
with gr.Blocks() as demo:
    gr.Markdown('# EchoMimic')
    gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
    gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
    gr.HTML("""
    <div style="display:flex;column-gap:4px;">
        <a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
        <a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
        <a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    </div>
    """)
    with gr.Row():
        with gr.Column():
            uploaded_img = gr.Image(type="filepath", label="Reference Image")
            uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
            with gr.Accordion("Advanced Configuration", open=False):
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"])
                    height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"])
                with gr.Row():
                    length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"])
                    seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"])
                with gr.Row():
                    facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"])
                    facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"])
                with gr.Row():
                    context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"])
                    context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"])
                with gr.Row():
                    cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"])
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"])
                with gr.Row():
                    sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"])
                    fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"])
                    device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"])
            generate_button = gr.Button("Generate Video")
        with gr.Column():
            output_video = gr.Video()
            gr.Examples(
                label = "Portrait examples",
                examples = [
                    ['assets/test_imgs/a.png'],
                    ['assets/test_imgs/b.png'],
                    ['assets/test_imgs/c.png'],
                    ['assets/test_imgs/d.png'],
                    ['assets/test_imgs/e.png']
                ],
                inputs = [uploaded_img]
            )
            gr.Examples(
                label = "Audio examples",
                examples = [
                    ['assets/test_audios/chunnuanhuakai.wav'],
                    ['assets/test_audios/chunwang.wav'],
                    ['assets/test_audios/echomimic_en_girl.wav'],
                    ['assets/test_audios/echomimic_en.wav'],
                    ['assets/test_audios/echomimic_girl.wav'],
                    ['assets/test_audios/echomimic.wav'],
                    ['assets/test_audios/jane.wav'],
                    ['assets/test_audios/mei.wav'],
                    ['assets/test_audios/walden.wav'],
                    ['assets/test_audios/yun.wav'],
                ],
                inputs = [uploaded_audio]
            )
            gr.HTML("""
            <a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
            </a>
            """)

    def generate_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):

        final_output_path = process_video(
            uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
        )        
        output_video= final_output_path
        return final_output_path

    generate_button.click(
        generate_video,
        inputs=[
            uploaded_img,
            uploaded_audio,
            width,
            height,
            length,
            seed,
            facemask_dilation_ratio,
            facecrop_dilation_ratio,
            context_frames,
            context_overlap,
            cfg,
            steps,
            sample_rate,
            fps,
            device
        ],
        outputs=output_video,
        show_api=False
    )
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()

# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)

if __name__ == '__main__':
    demo.queue(max_size=3).launch(show_api=False, show_error=True)
    #demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)