Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,801 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from skimage.transform import estimate_transform, AffineTransform
import numpy as np
from IPython import embed
import mediapipe as mp
import copy
mp_face_mesh = mp.solutions.face_mesh
FACEMESH_LEFT_EYE = [i for i in mp_face_mesh.FACEMESH_LEFT_EYE]
FACEMESH_RIGHT_EYE = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYE]
FACEMESH_LEFT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_LEFT_EYEBROW]
FACEMESH_RIGHT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYEBROW]
# copy from draw_utils
FACEMESH_LIPS_OUTER_BOTTOM_LEFT = [(61,146),(146,91),(91,181),(181,84),(84,17)]
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT = [(17,314),(314,405),(405,321),(321,375),(375,291)]
FACEMESH_LIPS_INNER_BOTTOM_LEFT = [(78,95),(95,88),(88,178),(178,87),(87,14)]
FACEMESH_LIPS_INNER_BOTTOM_RIGHT = [(14,317),(317,402),(402,318),(318,324),(324,308)]
FACEMESH_LIPS_OUTER_TOP_LEFT = [(61,185),(185,40),(40,39),(39,37),(37,0)]
FACEMESH_LIPS_OUTER_TOP_RIGHT = [(0,267),(267,269),(269,270),(270,409),(409,291)]
FACEMESH_LIPS_INNER_TOP_LEFT = [(78,191),(191,80),(80,81),(81,82),(82,13)]
FACEMESH_LIPS_INNER_TOP_RIGHT = [(13,312),(312,311),(311,310),(310,415),(415,308)]
FACEMESH_MOUSE = \
FACEMESH_LIPS_OUTER_BOTTOM_LEFT + \
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT + \
FACEMESH_LIPS_INNER_BOTTOM_LEFT + \
FACEMESH_LIPS_INNER_BOTTOM_RIGHT + \
FACEMESH_LIPS_OUTER_TOP_LEFT + \
FACEMESH_LIPS_OUTER_TOP_RIGHT + \
FACEMESH_LIPS_INNER_TOP_LEFT + \
FACEMESH_LIPS_INNER_TOP_RIGHT
LANDMARK_IDXES_DICT = {
"left_eye" : sorted(list(set([j for i in FACEMESH_LEFT_EYE for j in i])) + [473]),
"right_eye" : sorted(list(set([j for i in FACEMESH_RIGHT_EYE for j in i])) + [468]),
"mouse" : sorted(list(set([j for i in FACEMESH_MOUSE for j in i]))),
"nose" : sorted(list(set([1,4,5,274,275,281,44,45,51,220,440]))),
"left_eyebow" : sorted(list(set([j for i in FACEMESH_LEFT_EYEBROW for j in i]))),
"right_eyebow" : sorted(list(set([j for i in FACEMESH_RIGHT_EYEBROW for j in i]))),
}
def create_perspective_matrix(aspect_ratio):
kDegreesToRadians = np.pi / 180.
near = 1
far = 10000
perspective_matrix = np.zeros(16, dtype=np.float32)
# Standard perspective projection matrix calculations.
f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.)
denom = 1.0 / (near - far)
perspective_matrix[0] = f / aspect_ratio
perspective_matrix[5] = f
perspective_matrix[10] = (near + far) * denom
perspective_matrix[11] = -1.
perspective_matrix[14] = 1. * far * near * denom
# If the environment's origin point location is in the top left corner,
# then skip additional flip along Y-axis is required to render correctly.
perspective_matrix[5] *= -1.
return perspective_matrix
def project_points_with_trans(points_3d, transformation_matrix, image_shape):
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T
L, N, _ = points_3d.shape
projected_points = np.zeros((L, N, 2))
#embed()
for i in range(L):
points_3d_frame = points_3d[i]
ones = np.ones((points_3d_frame.shape[0], 1))
points_3d_homogeneous = np.hstack([points_3d_frame, ones])
transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1]
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0]
projected_points[i] = projected_points_frame
return projected_points
def project_vertices_from_ref2tgt(ref_lmks3d, tgt_trans_mat):
#eye_point_idxes
projected_vertices = project_points_with_trans(ref_lmks3d[np.newaxis, ...], tgt_trans_mat[np.newaxis, ...], [512, 512])[0]
return projected_vertices
def old_motion_sync_old(sequence_driver_det, reference_det):
assert type(sequence_driver_det) is list
assert type(sequence_driver_det[0]) is type(reference_det)
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det)
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"])
eye_idxes_all = LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"]
for det_id in range(len(sequence_driver_det)):
trans = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all])
sequence_driver_det[det_id]["lmks3d"] = np.vstack([
sequence_driver_det[det_id]["lmks3d"],
trans(sequence_driver_det[det_id]["lmks"][-10:])
])
trans_mats = []
for det in sequence_driver_det:
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"]))
trans_mats_smooth = []
smooth_margin = 2
for tm_itx in range(len(trans_mats)):
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)]
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes)
trans_mats_smooth.append(tm)
lmks3d_smooth = []
smooth_margin = 1
for det_itx in range(len(sequence_driver_det)):
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)]
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes))
for det_itx, lmks3d in enumerate(lmks3d_smooth):
sequence_driver_det[det_itx]["lmks3d"] = lmks3d
projected_vertices_list = []
for det_itx in range(len(sequence_driver_det)):
aligned_3d = overall_transform(sequence_driver_det[det_itx]["lmks3d"])
tmat = reference_det["trans_mat"] @ trans_mats_smooth[det_itx]
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat)
projected_vertices_list.append(projected_vertices)
# note : use normed=False after motion_sync, when draw(ing)_landmarks
# kps_image = vis.draw_landmarks((512, 512), projected_vertices, normed=False)
return projected_vertices_list
def motion_sync(sequence_driver_det, reference_det, per_landmark_align=True):
assert type(sequence_driver_det) is list
assert type(sequence_driver_det[0]) is type(reference_det)
eye_idxes_all = [i for i in sorted(list(set(LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"]))) if i < len(reference_det["lmks3d"])]
for det_id in range(len(sequence_driver_det)):
trans_iris = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all])
sequence_driver_det[det_id]["lmks3d"] = np.vstack([
sequence_driver_det[det_id]["lmks3d"],
trans_iris(sequence_driver_det[det_id]["lmks"][-10:])
])
trans_iris = estimate_transform('affine', reference_det["lmks"][eye_idxes_all], reference_det["lmks3d"][eye_idxes_all])
reference_det["lmks3d"] = np.vstack([
reference_det["lmks3d"],
trans_iris(reference_det["lmks"][-10:])
])
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det)
landmark_trans_dict = {}
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items():
rf_lm = reference_det["lmks3d"][landmark_idxes]
dr_lm = lmks3d_mean[landmark_idxes]
landmark_trans_dict[landmark_name] = estimate_transform('affine', dr_lm, rf_lm)
#embed()
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"])
#embed()
#lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det)
#overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"])
#driver_start_center = sequence_driver_det[0]["lmks3d"].mean(axis=0)
#reference_center = reference_det["lmks3d"].mean(axis=0)
#driver_start_size = ((sequence_driver_det[0]["lmks3d"] - driver_start_center)**2).sum()**(0.5)
#reference_size = ((reference_det["lmks3d"] - reference_center)**2).sum()**(0.5)
#reference_det_lmks3d_rescale = (reference_det["lmks3d"] - reference_center) / reference_size * driver_start_size + driver_start_center
#reference_transform_back = estimate_transform('affine', reference_det_lmks3d_rescale, reference_det["lmks3d"])
#driver_lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det)
#facial_transform = estimate_transform('affine', driver_lmks3d_mean, reference_det_lmks3d_rescale)
#for det_id in range(len(sequence_driver_det)):
# trans = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][:-10], sequence_driver_det[det_id]["lmks3d"])
# sequence_driver_det[det_id]["lmks3d"] = trans(sequence_driver_det[det_id]["lmks"])
trans_mats = []
for det in sequence_driver_det:
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"]))
trans_mats_smooth = []
smooth_margin = 2
for tm_itx in range(len(trans_mats)):
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)]
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes)
trans_mats_smooth.append(tm)
lmks3d_smooth = []
smooth_margin = 1
for det_itx in range(len(sequence_driver_det)):
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)]
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes))
for det_itx, lmks3d in enumerate(lmks3d_smooth):
sequence_driver_det[det_itx]["lmks3d"] = lmks3d
projected_vertices_list = []
for det_itx in range(len(sequence_driver_det)):
#aligned_3d = overall_transform(sequence_driver_det[det_itx]["lmks3d"])
aligned_3d = copy.deepcopy(sequence_driver_det[det_itx]["lmks3d"])
if per_landmark_align:
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items():
dr_lm = sequence_driver_det[det_itx]["lmks3d"][landmark_idxes]
lm_trans = landmark_trans_dict[landmark_name]
aligned_3d[landmark_idxes] = lm_trans(dr_lm)
#aligned_3d = lmks3d_mean
tmat = trans_mats_smooth[det_itx] @ reference_det["trans_mat"]
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat)
projected_vertices_list.append(projected_vertices)
continue
trans_ref_aligned_to_driver = (sequence_driver_det[det_itx]["trans_mat"]) @ np.linalg.inv(reference_det["trans_mat"])
ref_aligned_to_driver = AffineTransform(trans_ref_aligned_to_driver)(reference_det["lmks3d"])
det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"])
aligned_3d = sequence_driver_det[det_itx]["lmks3d"]
#facial_transform(sequence_driver_det[det_itx]["lmks3d"])
#tmat = reference_det["trans_mat"] @ trans_mats_smooth[det_itx]
tmat = sequence_driver_det[det_itx]["trans_mat"] @ trans_mats_smooth[det_itx] #@ reference_transform_back.params
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat)
#embed()
#projected_vertices = reference_transform_back(projected_vertices)
projected_vertices_list.append(projected_vertices)
# note : use normed=False after motion_sync, when draw(ing)_landmarks
# kps_image = vis.draw_landmarks((512, 512), projected_vertices, normed=False)
return projected_vertices_list
|