Spaces:
Running
on
T4
Running
on
T4
File size: 1,145 Bytes
4d88461 8520bf2 4d88461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from transformers import AutoModel, AutoTokenizer
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
def predict(input, history=None):
if history is None:
history = []
response, history = model.chat(tokenizer, input, history)
return history, history
with gr.Blocks() as demo:
gr.Markdown('''## ChatGLM-6B - unofficial demo
Unnoficial demo of the [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B/blob/main/README_en.md) model, trained on 1T tokens of English and Chinese
''')
state = gr.State([])
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
with gr.Column(scale=1):
button = gr.Button("Generate")
txt.submit(predict, [txt, state], [chatbot, state])
button.click(predict, [txt, state], [chatbot, state])
demo.queue().launch() |