File size: 1,540 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""Utility function for weight initialization"""

import torch.nn as nn
from fvcore.nn.weight_init import c2_msra_fill


def init_weights(model, fc_init_std=0.01, zero_init_final_bn=True):
    """
    Performs ResNet style weight initialization.
    Args:
        fc_init_std (float): the expected standard deviation for fc layer.
        zero_init_final_bn (bool): if True, zero initialize the final bn for
            every bottleneck.
    """
    for m in model.modules():
        if isinstance(m, nn.Conv3d):
            """
            Follow the initialization method proposed in:
            {He, Kaiming, et al.
            "Delving deep into rectifiers: Surpassing human-level
            performance on imagenet classification."
            arXiv preprint arXiv:1502.01852 (2015)}
            """
            c2_msra_fill(m)
        elif isinstance(m, nn.BatchNorm3d):
            if (
                hasattr(m, "transform_final_bn")
                and m.transform_final_bn
                and zero_init_final_bn
            ):
                batchnorm_weight = 0.0
            else:
                batchnorm_weight = 1.0
            if m.weight is not None:
                m.weight.data.fill_(batchnorm_weight)
            if m.bias is not None:
                m.bias.data.zero_()
        if isinstance(m, nn.Linear):
            m.weight.data.normal_(mean=0.0, std=fc_init_std)
            if m.bias is not None:
                m.bias.data.zero_()