File size: 16,468 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
## from VL-Adapter

from torch.utils.data import DataLoader, Dataset
from pathlib import Path
import json
import random
import torch
import numpy as np

from torchvision import transforms


from torch.utils.data.distributed import DistributedSampler


from PIL import Image
import re 

from dataset.video_utils import VIDEO_READER_FUNCS


project_dir = Path(__file__).resolve().parent.parent  # VLT5
workspace_dir = project_dir.parent



class MSRVTTVQAFineTuneDataset(Dataset):
    def __init__(self, split='train,valid', raw_dataset=None, rank=-1, topk=-1, verbose=True, args=None, mode='train', data_dir=None):
        super().__init__()

        self.raw_dataset = raw_dataset
        self.topk = topk
        self.verbose = verbose
        self.args = args

        self.mode = mode

        data_dir = Path(data_dir)
        dataset_dir = data_dir.joinpath('annotation') 
        coco_img_dir = data_dir.joinpath('videos/all')

        # video 
        self.num_frames = args.num_frames # 4
        self.video_reader = VIDEO_READER_FUNCS['decord']
        self.as_images = args.as_images # True
        self.num_tries = args.num_tries # 2
        self.sample_type = args.sample_type # 'rand'


        normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
        

        type_transform = transforms.Lambda(lambda x: x.float().div(255.0))



        self.train_transform = transforms.Compose([                        
                transforms.RandomResizedCrop(args.image_size,scale=(0.5, 1.0), interpolation=Image.BICUBIC),
                transforms.RandomHorizontalFlip(),
                transforms.RandAugment(),     
                type_transform,
                normalize,
            ])  
        self.test_transform = transforms.Compose([
            transforms.Resize((args.image_size,args.image_size),interpolation=Image.BICUBIC),
            type_transform,
            normalize,
            ])  



        # Loading datasets to data
        self.sources = split.split(',')
        if self.verbose:
            print('Data sources: ', self.sources)



        data_info_path = dataset_dir.joinpath(split+'.json')
        with open(data_info_path) as f:
            karpathy_data = json.load(f)



        data = karpathy_data



        if isinstance(self.topk, float) and (0 < self.topk <= 1):
            used_samples = int(self.topk * len(data))
            data = random.sample(data, used_samples)
            if self.verbose:
                print(f"Use only {len(data)} data")

        elif self.topk > 0:
            data = data[:int(self.topk)]
            if self.verbose:
                print(f"Use only {len(data)} data")

        self.data = data

        if self.verbose:
            print("# all sentences:", len(self.data))


        self.image_size = self.args.image_size

        if mode == "train" and self.args.use_data_augmentation:
            self.transform = self.train_transform
        else:
            self.transform = self.test_transform

        self.source_to_h5 = {}
        self.source_to_h5.update({
            'all': coco_img_dir,
        })


    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):

        out_dict = {}
        out_dict['args'] = self.args

        datum = self.data[idx]


        ###### Image ######

        for i in range(self.num_tries):

            try:
                datum = self.data[idx]

                ###### Image ######
                video = datum['video']
                out_dict['img_id'] = video.split('.')[0]

                path = str(self.source_to_h5['all'].joinpath(f"{video}"))


                max_num_frames = self.max_num_frames if hasattr(self, "max_num_frames") else -1
                frames, frame_indices, video_duration = self.video_reader(
                    path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
                )

            except Exception as e:
                print(i, path)
                idx = random.randint(0, len(self) - 1)
                print(
                    f"Caught exception {e} when loading video {path}, "
                    f"randomly sample a new video as replacement"
                )
                continue


        out_dict["image"] = self.transform(frames)
        if not self.as_images:
            out_dict["image"] = out_dict["image"].permute(1, 0, 2, 3) # -> CTHW

        ###### Text #####


        if 'sent' in datum:
            sent = datum['sent']
        elif 'question' in datum:
            sent = datum['question']

        question_id = datum['question_id']
        out_dict['question_id'] = question_id

        out_dict['sent'] = sent


        if 'label' in datum:
            label = datum['label']
            out_dict['label'] = label

            # https://github.com/airsplay/lxmert/blob/master/src/pretrain/lxmert_pretrain.py#L191
            answers = []
            scores = []
            for a, s in label.items():
                answers.append(a)
                scores.append(s)

            score_sum = sum(scores)

            if score_sum == 0:
                answer = ''
                score = 0.
            else:
                prob = [score / score_sum for score in scores]
                choice = np.random.multinomial(1, prob).argmax()
                answer = answers[choice]
                score = scores[choice]
                assert len(answer) > 0, (sent, label, choice, answer)

            out_dict['answer'] = answer
            out_dict['score'] = score
            out_dict['all_answers'] = answers



        return out_dict


    def collate_fn(self, batch):
        batch_entry = {}

        args = batch[0]['args']

        B = len(batch)



        sentences = []
        question_ids = []
        answers = []
        all_answers = []
        labels = []
        scores = []

        images = []

        for i, entry in enumerate(batch):

            images.append(entry["image"])


            sentences.append(entry['sent'])
            question_ids.append(entry['question_id'])
            if 'answer' in entry:
                answers.append(entry['answer'])
            if 'all_answers' in entry:
                all_answers.append(entry['all_answers'])

            if 'score' in entry:
                scores.append(entry['score'])

            if 'label' in entry:
                labels.append(entry['label'])


        batch_entry['images'] = torch.stack(images)


        batch_entry['sent'] = sentences
        batch_entry['question_ids'] = question_ids
        batch_entry['answers'] = answers
        batch_entry['all_answers'] = all_answers

        batch_entry['scores'] = torch.FloatTensor(scores)
        batch_entry['labels'] = labels

        batch_entry['task'] = 'gqa'

        return batch_entry

 
def get_loader(args, split='train', mode='train',
               batch_size=32, workers=4, distributed=False, gpu=0,
               topk=-1, verbose=None, data_dir='/data/mshukor/data', local_rank=None, world_size=None):



    _dset = MSRVTTVQADataset(split, verbose, data_dir=data_dir)

    dataset = MSRVTTVQAFineTuneDataset(
        split,
        raw_dataset=_dset,
        rank=gpu,
        topk=topk,
        verbose=verbose,
        args=args,
        mode=mode, data_dir=data_dir)

    if distributed:
        sampler = DistributedSampler(dataset, num_replicas=world_size, rank=local_rank)
    else:
        sampler = None


    if mode == 'train':
        loader = DataLoader(
            dataset, batch_size=batch_size, shuffle=(sampler is None),
            num_workers=workers, pin_memory=True, sampler=sampler,
            collate_fn=dataset.collate_fn)
    else:
        loader = DataLoader(
            dataset,
            batch_size=batch_size,
            num_workers=workers, pin_memory=True,
            sampler=sampler,
            shuffle=None if (sampler is not None) else False,
            collate_fn=dataset.collate_fn,
            drop_last=False)

    loader.evaluator = MSRVTTVQAQAEvaluator(_dset)
    loader.task = 'msrvttvqa'

    return loader


class MSRVTTVQADataset:
    """
    A GQA data example in json file:
    {
        "video": "2375429.mp4",
        "label": {
            "pipe": 1.0
        },
        "question_id": "07333408",
        "sent": "What is on the white wall?"
    }
    """

    def __init__(self, splits: str, verbose=True, data_dir='/data/mshukor/data'):
        self.name = splits
        self.splits = splits.split(',')

        data_dir = Path(data_dir)
        dataset_dir = data_dir.joinpath('annotation')




        # Loading datasets to data
        self.data = []
        for split in self.splits:
            self.data.extend(json.load(open(dataset_dir.joinpath("%s.json" % split))))
        if verbose:
            print("Load %d data from split(s) %s." %
                  (len(self.data), self.name))

        # List to dict (for evaluation and others)
        self.id2datum = {
            datum['question_id']: datum
            for datum in self.data
        }



    def __len__(self):
        return len(self.data)


class MSRVTTVQAQAEvaluator:
    def __init__(self, dataset: MSRVTTVQADataset):
        self.dataset = dataset

        """https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""

        self.contractions = {"aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", \
                             "couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", \
                             "hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", \
                             "he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", \
                             "Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", \
                             "maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", \
                             "mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", \
                             "ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", \
                             "she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", \
                             "somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", \
                             "somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", \
                             "someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", \
                             "something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", \
                             "there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", \
                             "they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", \
                             "wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", \
                             "whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", \
                             "whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", \
                             "whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", \
                             "wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", \
                             "y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", \
                             "youll": "you'll", "youre": "you're", "youve": "you've"}

        self.manualMap    = { 'none': '0',
                              'zero': '0',
                              'one': '1',
                              'two': '2',
                              'three': '3',
                              'four': '4',
                              'five': '5',
                              'six': '6',
                              'seven': '7',
                              'eight': '8',
                              'nine': '9',
                              'ten': '10'
                            }

        self.articles     = ['a',
                             'an',
                             'the'
                            ]

        self.periodStrip  = re.compile("(?!<=\d)(\.)(?!\d)")
        self.commaStrip   = re.compile("(\d)(\,)(\d)")
        self.punct        = [';', r"/", '[', ']', '"', '{', '}',
                             '(', ')', '=', '+', '\\', '_', '-',
                             '>', '<', '@', '`', ',', '?', '!']

    def evaluate(self, quesid2ans: dict, normalize_answer=False):
        score = 0.
        for quesid, ans in quesid2ans.items():
            datum = self.dataset.id2datum[quesid]
            label = datum['label']
            if normalize_answer:
                ans = self.normalize_answer(ans)
                new_label = {self.normalize_answer(l): label[l] for l in label}
            else:
                new_label = label

            if ans in new_label:
                score += new_label[ans]
        return score / len(quesid2ans)

    def normalize_answer(self, resAns):
        resAns      = resAns.replace('\n', ' ')
        resAns      = resAns.replace('\t', ' ')
        resAns      = resAns.strip()
        resAns      = self.processPunctuation(resAns)
        resAns      = self.processDigitArticle(resAns)
        resAns = resAns.replace(',', '')
        return resAns

    def processPunctuation(self, inText):
        outText = inText
        for p in self.punct:
            if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None):
                outText = outText.replace(p, '')
            else:
                outText = outText.replace(p, ' ')
        outText = self.periodStrip.sub("",
                                        outText,
                                        re.UNICODE)
        return outText

    def processDigitArticle(self, inText):
        outText = []
        tempText = inText.lower().split()
        for word in tempText:
            word = self.manualMap.setdefault(word, word)
            if word not in self.articles:
                outText.append(word)
            else:
                pass
        for wordId, word in enumerate(outText):
            if word in self.contractions:
                outText[wordId] = self.contractions[word]
        outText = ' '.join(outText)
        return outText

    def dump_result(self, quesid2ans: dict, path):
        """
        Dump the result to a GQA-challenge submittable json file.
        GQA json file submission requirement:
            results = [result]
            result = {
                "questionId": str,      # Note: it's a actually an int number but the server requires an str.
                "prediction": str
            }
        :param quesid2ans: A dict mapping question id to its predicted answer.
        :param path: The file path to save the json file.
        :return:
        """
        with open(path, 'w') as f:
            result = []
            for ques_id, ans in quesid2ans.items():
                result.append({
                    'questionId': ques_id,
                    'prediction': ans
                })
            json.dump(result, f, indent=4, sort_keys=True)