File size: 8,538 Bytes
3eb682b 06253c3 3eb682b 2f68cd3 3eb682b 06253c3 4668a73 3eb682b aff9f36 2dc23ea 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 902be23 78ad2cd 902be23 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 902be23 3eb682b 902be23 78ad2cd 902be23 3eb682b 0fb65d4 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b 78ad2cd 3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import timesformer
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/image/ePALM_caption.yaml'
# config = yaml.load(open(config, 'r'), Loader=yaml.Loader)
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'vit_base_patch16_224'
# text_model = 'facebook/opt-6.7b'
# vision_model_name = 'vit_large_patch16_224'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
model_caption = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
model_caption.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = model_caption.load_state_dict(state_dict,strict=False)
model_caption.bfloat16()
###### VQA
config = 'configs/image/ePALM_vqa.yaml'
config = yaml.load(open(config, 'r'))
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
model_vqa = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
model_vqa.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = model_vqa.load_state_dict(state_dict,strict=False)
model_vqa.bfloat16()
# Video Captioning
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_video_caption = checkpoint['model']
# Video QA
checkpoint_path = 'checkpoints/float32/ePALM_video_qa_msrvtt/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_video_qa = checkpoint['model']
# Audio Captioning
checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
# checkpoint_path = '/data/mshukor/logs/eplam/models/accelerate/ePALM_pt_L_acc_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_audio_caption = checkpoint['model']
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
do_sample=False
num_beams=3
max_length=30
def inference(image, audio, video, task_type, instruction):
if task_type == 'Image Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = model_caption.clone()
elif task_type == 'Video Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_video_caption,strict=False)
model = model_caption.clone()
elif task_type == 'Audio Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model_caption = model_caption.load_state_dict(state_dict_audio_caption,strict=False)
model = model_caption.clone()
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
model = model_vqa.clone()
elif task_type == 'Visual Question Answering':
question = instruction+'?'+special_answer_token
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
model_vqa = model_vqa.load_state_dict(state_dict_video_qa,strict=False)
model = model_vqa.clone()
else:
raise NotImplemented
if "Video" in task_type:
pass
elif "Audio" in task_type:
pass
else:
image = transform(image)
image = image.to(device,non_blocking=True).unsqueeze(0)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/images/soccer.jpg', None, None, 'Image Captioning', None],
['examples/images/ski.jpg', None, None, 'Visual Question Answering', 'what does the woman wearing black do?'],
['examples/images/banana.jpg', None, None, 'Image Captioning', None],
['examples/images/skateboard.jpg', None, None, 'Visual Question Answering', 'what is on top of the skateboard?'],
['examples/images/baseball.jpg', None, None, 'Image Captioning', None],
[None, None, 'examples/videos/video7014.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7017.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7019.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
[None, None, 'examples/videos/video7021.mp4', 'Video Captioning', None],
[None, 'examples/audios/6cS0FsUM-cQ.wav', None, 'Audio Captioning', None],
[None, 'examples/audios/AJtNitYMa1I.wav', None, 'Audio Captioning', None],
]
title = "eP-ALM"
description = "Gradio Demo for eP-ALM: "
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |